Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Opin Nephrol Hypertens ; 31(5): 493-501, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894285

RESUMO

PURPOSE OF REVIEW: This review provides an up-to-date understanding about the regulation of epithelial sodium channel (ENaC) expression and function. In particular, we will focus on its implication in renal Na+ and K+ handling and control of blood pressure using transgenic animal models. RECENT FINDINGS: In kidney, the highly amiloride-sensitive ENaC maintains whole body Na+ homeostasis by modulating Na+ transport via epithelia. This classical role is mostly confirmed using genetically engineered animal models. Recently identified key signaling pathways that regulate ENaC expression and function unveiled some nonclassical and unexpected channel regulatory processes. If aberrant, these dysregulated mechanisms may also result in the development of salt-dependent hypertension.The purpose of this review is to highlight the most recent findings in renal ENaC regulation and function, in considering data obtained from animal models. SUMMARY: Increased ENaC-mediated Na+ transport is a prerequisite for salt-dependent forms of hypertension. To treat salt-sensitive hypertension it is crucial to fully understand the function and regulation of ENaC.


Assuntos
Canais Epiteliais de Sódio , Hipertensão , Animais , Pressão Sanguínea/fisiologia , Canais Epiteliais de Sódio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo
2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743186

RESUMO

The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.


Assuntos
Aldosterona , Sódio , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Camundongos , Oligopeptídeos , Serina Endopeptidases , Sódio/metabolismo
3.
Cells ; 12(19)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37830556

RESUMO

The serine proteases CAP1/Prss8 and CAP3/St14 are identified as ENaC channel-activating proteases in vitro, highly suggesting that they are required for proteolytic activation of ENaC in vivo. The present study tested whether CAP3/St14 is relevant for renal proteolytic ENaC activation and affects ENaC-mediated Na+ absorption following Na+ deprivation conditions. CAP3/St14 knockout mice exhibit a significant decrease in CAP1/Prss8 protein expression with altered ENaC subunit and decreased pNCC protein abundances but overall maintain sodium balance. RNAscope-based analyses reveal co-expression of CAP3/St14 and CAP1/Prss8 with alpha ENaC in distal tubules of the cortex from wild-type mice. Double CAP1/Prss8; CAP3/St14-deficiency maintained Na+ and K+ balance on a Na+-deprived diet, restored ENaC subunit protein abundances but showed reduced NCC activity under Na+ deprivation. Overall, our data clearly show that CAP3/St14 is not required for direct proteolytic activation of ENaC but for its protein abundance. Our study reveals a complex regulation of ENaC by these serine proteases on the expression level rather than on its proteolytic activation.


Assuntos
Canais Epiteliais de Sódio , Serina Proteases , Animais , Camundongos , Rim , Canais Epiteliais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA