Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genetics ; 228(1)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39053622

RESUMO

The elongation of Caenorhabditis elegans embryos allows examination of mechanical interactions between adjacent tissues. Muscle contractions during late elongation induce the remodeling of epidermal circumferential actin filaments through mechanotransduction. Force inputs from the muscles deform circumferential epidermal actin filament, which causes them to be severed, eventually reformed, and shortened. This squeezing force drives embryonic elongation. We investigated the possible role of the nonmuscle myosins NMY-1 and NMY-2 in this process using nmy-1 and nmy-2 thermosensitive alleles. Our findings show these myosins act redundantly in late elongation, since double nmy-2(ts); nmy-1(ts) mutants immediately stop elongation when raised to 25°C. Their inactivation does not reduce muscle activity, as measured from epidermis deformation, suggesting that they are directly involved in the multistep process of epidermal remodeling. Furthermore, NMY-1 and NMY-2 inactivation is reversible when embryos are kept at the nonpermissive temperature for a few hours. However, after longer exposure to 25°C double mutant embryos fail to resume elongation, presumably because NMY-1 was seen to form protein aggregates. We propose that the two C. elegans nonmuscle myosin II act during actin remodeling either to bring severed ends or hold them.


Assuntos
Alelos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutação , Embrião não Mamífero/metabolismo , Epiderme/metabolismo , Epiderme/embriologia , Miosinas/metabolismo , Miosinas/genética , Cadeias Pesadas de Miosina
2.
Elife ; 92020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894220

RESUMO

Jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around 'hubs' which serve as positional landmarks. Stabilization of these hubs, and associated expression of Wnt6, depends on the configuration of the adjoining muscle fiber 'spokes'. Stabilized hubs presage the site of the manubrium blastema, whose growth is Wnt/ß-catenin dependent and fueled by both cell proliferation and long-range cell recruitment. Manubrium morphogenesis is modulated by its connections with the gastrovascular canal system. We conclude that body patterning in regenerating jellyfish emerges mainly from local interactions, triggered and directed by the remodeling process.


Assuntos
Padronização Corporal/fisiologia , Hidrozoários/fisiologia , Regeneração/fisiologia , Animais , Movimento Celular , Hidrozoários/citologia , Hidrozoários/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA