Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Transfus Apher Sci ; 63(2): 103891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336556

RESUMO

The use of blood and blood products can be life-saving, but there are also certain risks associated with their administration and use. Packed red blood cells (pRBCs) and platelet concentrates are the most commonly used blood products in transfusion medicine to treat anemia or acute and chronic bleeding disorders, respectively. During the production and storage of blood products, red blood cells and platelets release extracellular vesicles (EVs) as a result of the storage lesion, which may affect product quality. EVs are subcellular structures enclosed by a lipid bilayer and originate from the endosomal system or from the plasma membrane. They play a pivotal role in intercellular communication and are emerging as important regulators of inflammation and coagulation. Their cargo and their functional characteristics depend on the cell type from which they originate, as well as on their microenvironment, influencing their capacity to promote coagulation and inflammatory responses. Hence, the potential involvement of EVs in transfusion-related adverse events is increasingly recognized and studied. Here, we review the knowledge regarding the effect of production and storage conditions of pRBCs and platelet concentrates on the release of EVs. In this context, the mode of processing and anticoagulation, the influence of additive solutions and leukoreduction, as well as the storage duration will be addressed, and we discuss potential implications of EVs for the clinical outcome of transfusion.


Assuntos
Anemia , Vesículas Extracelulares , Humanos , Plaquetas , Transfusão de Sangue , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Preservação de Sangue/métodos
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069209

RESUMO

Severe COVID-19 is frequently associated with thromboembolic complications. Increased platelet activation and platelet-leukocyte aggregate formation can amplify thrombotic responses by inducing tissue factor (TF) expression on leukocytes. Here, we characterized TF-positive extracellular vesicles (EVs) and their cellular origin in 12 patients suffering from severe COVID-19 (time course, 134 samples overall) and 25 healthy controls. EVs exposing phosphatidylserine (PS) were characterized by flow cytometry. Their cellular origin was determined by staining with anti-CD41, anti-CD45, anti-CD235a, and anti-CD105 as platelet, leukocyte, red blood cell, and endothelial markers. We further investigated the association of EVs with TF, platelet factor 4 (PF4), C-reactive protein (CRP), and high mobility group box-1 protein (HMGB-1). COVID-19 patients showed higher levels of PS-exposing EVs compared to controls. The majority of these EVs originated from platelets. A higher amount of EVs in patient samples was associated with CRP, HMGB-1, PF4, and TF as compared to EVs from healthy donors. In COVID-19 samples, 16.5% of all CD41+ EVs displayed the leukocyte marker CD45, and 55.5% of all EV aggregates (CD41+CD45+) co-expressed TF, which reflects the interaction of platelets and leukocytes in COVID-19 on an EV level.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Plaquetas/metabolismo , COVID-19/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas HMGB/metabolismo , Leucócitos/metabolismo , Tromboplastina/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163743

RESUMO

Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Heparina/farmacologia , Tromboinflamação/tratamento farmacológico , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , COVID-19/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Proteínas HMGB/isolamento & purificação , Proteínas HMGB/metabolismo , Proteína HMGB1/isolamento & purificação , Proteína HMGB1/metabolismo , Heparina/metabolismo , Histonas/isolamento & purificação , Histonas/metabolismo , Humanos , Neutrófilos/metabolismo , Ativação Plaquetária/imunologia , Fator Plaquetário 4/isolamento & purificação , Fator Plaquetário 4/metabolismo , SARS-CoV-2/patogenicidade , Sepse/sangue , Sepse/metabolismo , Tromboplastina/metabolismo , Trombose/tratamento farmacológico
4.
Mediators Inflamm ; 2021: 8395048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790693

RESUMO

The timely recognition of sepsis and the prediction of its clinical course are challenging due to the complex molecular mechanisms leading to organ failure and to the heterogeneity of sepsis patients. Treatment strategies relying on a "one-fits-all" approach have failed to reduce mortality, suggesting that therapeutic targets differ between patient subgroups and highlighting the need for accurate analysis of the molecular cascades to assess the highly variable host response. Here, we characterized a panel of 44 inflammatory mediators, including cytokines, chemokines, damage-associated molecular patterns, and coagulation-related factors, as well as markers of endothelial activation in 30 patients suffering from renal failure in the course of sepsis. All patients received continuous veno-venous hemodialysis with either high cut-off filters or with standard filters, and mediators were quantified for all patients at the initiation of dialysis and after 24 h and 48 h. Mediator concentrations in individual patients ranged widely, demonstrating the heterogeneity of sepsis patients. None of the mediators correlated with SAPS III or TISS scores. The overall in-hospital mortality of the study population was 56.7% (57.1% vs. 56.3% for high cut-off vs. standard filter). The two filter groups differed regarding most of the mediator levels at baseline, prohibiting conclusions regarding the effect of standard filters versus high cut-off filters on mediator depletion. The elevation and correlation of damage-associated molecular patterns and markers of endothelial activation gave evidence of severe tissue damage. In particular, extracellular histones were strongly increased and were almost 30-fold higher in nonsurvivors as compared to survivors, indicating their diagnostic and prognostic potential.


Assuntos
Histonas , Sepse , Alarminas , Humanos , Prognóstico , Diálise Renal
5.
Biochem Biophys Res Commun ; 517(4): 709-714, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387744

RESUMO

Human monocytes include CD14++CD16- (classical), CD14++CD16+ (intermediate), and CD14+CD16++ (non-classical) subsets with divergent roles in immune regulation and inflammation. Since the functional characterization of monocyte subsets is most commonly performed using isolated monocytes, we investigated the influence of different monocyte isolation protocols on the relative abundance of monocyte subsets. Using flow cytometric subset characterization directly in whole blood as a reference, we found that monocyte isolation by enrichment of peripheral blood mononuclear cells and subsequent depletion of non-monocytes by magnetic labeling did not alter the distribution of monocyte subsets. Particularly, we failed to detect a loss of CD16+ subsets upon monocyte isolation, although one of the negative depletion protocols used contained an anti-CD16 antibody to label granulocytes. Overnight storage of isolated monocytes induced a significant repartition of monocyte subsets towards CD14++CD16+ intermediate monocytes, which was barely seen in stored whole blood. We identified intermediate monocytes as main binding partners of platelet-derived extracellular vesicles (EVs) and propose that residual platelets contained in isolated monocyte preparations release EVs that induce the expression of the IgG receptor FcγRIII (CD16) on monocytes.


Assuntos
Preservação de Sangue , Monócitos/citologia , Plaquetas/metabolismo , Separação Celular , Vesículas Extracelulares/metabolismo , Humanos
6.
Transfus Apher Sci ; 63(2): 103893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485612
7.
Transfus Apher Sci ; 63(2): 103894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360511
8.
Blood Purif ; 44(4): 260-266, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28988232

RESUMO

BACKGROUND: High cutoff hemofilters might support the restoration of immune homeostasis in systemic inflammation by depleting inflammatory mediators from the circulation. METHODS: Interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha depletion was assessed in 30 sepsis patients with acute renal failure using continuous veno-venous hemodialysis with high cutoff versus standard filters (CVVHD-HCO vs. CVVHD-STD) over 48 h. RESULTS: The transfer of IL-6 and IL-8 was significantly higher for CVVHD-HCO, as shown by increased IL-6 and IL-8 effluent concentrations. The mean plasma cytokine concentrations decreased over time for all cytokines without detectable differences for the treatment modalities. No transfer of albumin was observed for either of the filters. C-reactive protein remained stable over time and did not differ between CVVHD-HCO and CVVHD-STD, while procalcitonin decreased significantly over 48 h for both treatment modalities. CONCLUSION: CVVHD-HCO achieved enhanced removal of IL-6 and IL-8 as compared to CVVHD-STD, without differentially reducing plasma cytokine levels.


Assuntos
Citocinas/sangue , Diálise Renal , Sepse/sangue , Sepse/terapia , Proteína C-Reativa/metabolismo , Feminino , Humanos , Masculino
9.
Sci Rep ; 14(1): 6419, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494537

RESUMO

Extracellular vesicles (EVs) have crucial roles in hemostasis and coagulation. They sustain coagulation by exposing phosphatidylserine and initiate clotting by surface expression of tissue factor (TF) under inflammatory conditions. As their relevance as biomarkers of coagulopathy is increasingly recognized, there is a need for the sensitive and reliable detection of TF+ EVs, but their flow cytometric analysis is challenging and has yielded controversial findings for TF expression on EVs in the vascular system. We investigated the effect of different fluorochrome-to-protein (F/P) ratios of anti-TF-fluorochrome conjugates on the flow cytometric detection of TF+ EVs from activated monocytes, mesenchymal stem cells (MSCs), and in COVID-19 plasma. Using a FITC-labeled anti-TF antibody (clone VD8), we show that the percentage of TF+ EVs declined with decreasing F/P ratios. TF was detected on 7.6%, 5.4%, and 1.1% of all EVs derived from activated monocytes at F/P ratios of 7.7:1, 6.6:1, and 5.2:1. A similar decline was observed for EVs from MSCs and for EVs in plasma, whereas the detection of TF on cells remained unaffected by different F/P ratios. We provide clear evidence that next to the antibody clone, the F/P ratio affects the flow cytometric detection of TF+ EVs and should be carefully controlled.


Assuntos
Vesículas Extracelulares , Tromboplastina , Tromboplastina/metabolismo , Corantes Fluorescentes/metabolismo , Coagulação Sanguínea , Vesículas Extracelulares/metabolismo
10.
Mediators Inflamm ; 2013: 697972, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818743

RESUMO

THP-1 cells are widely applied to mimic monocytes in cell culture models. In this study, we compared the cytokine release from THP-1, peripheral blood mononuclear cells (PBMC), monocytes, or whole blood after stimulation with lipopolysaccharide (LPS) and investigated the consequences of different cytokine profiles on human umbilical vein endothelial cell (HUVEC) activation. While Pseudomonas aeruginosa-stimulated (10 ng/mL) THP-1 secreted similar amounts of tumor necrosis factor alpha (TNF- α ) as monocytes and PBMC, they produced lower amounts of interleukin(IL)-8 and no IL-6 and IL-10. Whole blood required a higher concentration of Pseudomonas aeruginosa (1000 ng/mL) to induce cytokine release than isolated monocytes or PBMC (10 ng/mL). HUVEC secreted more IL-6 and IL-8 after stimulation with conditioned medium derived from whole blood than from THP-1, despite equal concentrations of TNF- α in both media. Specific adsorption of TNF- α or selective cytokine adsorption from the conditioned media prior to HUVEC stimulation significantly reduced HUVEC activation. Our findings show that THP-1 differ from monocytes, PBMC, and whole blood with respect to cytokine release after stimulation with LPS. Additionally, we could demonstrate that adsorption of inflammatory mediators results in reduced endothelial activation, which supports the concept of extracorporeal mediator modulation as supportive therapy for sepsis.


Assuntos
Citocinas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Linhagem Celular , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Pseudomonas aeruginosa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Diagnostics (Basel) ; 13(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980378

RESUMO

Immunothrombosis, an excessive inflammatory response with simultaneous overactivation of the coagulation system, is a central pathomechanism in sepsis and COVID-19. It is associated with cellular activation, vascular damage, and microvascular thrombosis, which can lead to multiple organ failure and death. Here, we characterized factors related to immunothrombosis in plasma samples from 78 sepsis patients. In the course of routine clinical testing, SARS-CoV-2 was detected in 14 of these patients. Viral infection was associated with a higher mortality. Both, COVID-19 negative and COVID-19 positive sepsis patients showed increased levels of effectors of immunothrombosis, including platelet factor 4, D-dimer, nucleosomes, citrullinated histone H3, high mobility group box-1 protein, as well as phosphatidylserine-expressing platelet-derived extracellular vesicles, compared to healthy controls (n = 25). Using a 27-plex cytokine bead array, we found that Interleukin (IL)-1ra, IL-6, IL-8, IL-13, tumor necrosis factor (TNF)-α, interferon inducible protein (IP)-10, monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, and granulocyte-colony stimulating factor (G-CSF) were elevated in both, COVID-19 negative and COVID-19 positive sepsis patients, as compared to healthy controls. SARS-CoV-2 infection was associated with elevated levels of IP-10, MCP-1, and IL-13, while all other mediators widely overlapped between COVID-19 negative and COVID-19 positive patients.

12.
J Funct Biomater ; 13(4)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412857

RESUMO

Adsorbents for whole blood apheresis need to be highly blood compatible to minimize the activation of blood cells on the biomaterial surface. Here, we developed blood-compatible matrices by surface modification with polyzwitterionic polysulfobetainic and polycarboxybetainic coatings. Photoreactive zwitterionic terpolymers were synthesized by free-radical polymerization of zwitterionic, photoreactive, and fluorescent monomers. Upon UV irradiation, the terpolymers were photodeposited and mutually crosslinked on the surface of hydrophobic polystyrene-co-divinylbenzene and hydrophilic polyacrylamide-co-polyacrylate (DALI) beads. Fluorescent microscopy revealed coatings with an average thickness of 5 µm, which were limited to the bead surface. Blood compatibility was assessed based on polymer-induced hemolysis, coagulation parameters, and in vitro tests. The maintenance of the adsorption capacity after coating was studied in human whole blood with cytokines for polystyrene beads (remained capacity 25-67%) and with low-density lipoprotein (remained capacity 80%) for polyacrylate beads. Coating enhanced the blood compatibility of hydrophobic, but not of hydrophilic adsorbents. The most prominent effect was observed on coagulation parameters (e.g., PT, aPTT, TT, and protein C) and neutrophil count. Polycarboxybetaine with a charge spacer of five carbons was the most promising polyzwitterion for the coating of adsorbents for whole blood apheresis.

13.
Front Cell Dev Biol ; 10: 914891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874830

RESUMO

Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.

14.
Sci Rep ; 11(1): 6996, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772103

RESUMO

There is increasing evidence that C-reactive protein (CRP) can mediate inflammatory reactions following the transformation of functionally inert pentameric CRP (pCRP) into its structural isoform pCRP* and into monomeric CRP (mCRP). This conversion can occur on the membranes of apoptotic or activated cells or on extracellular vesicles (EVs) shed from the cell surface. Here, we characterized the association of CRP with EVs in plasma from sepsis patients using flow cytometry, and found highly elevated levels of total EV counts and CRP+ EVs as compared to healthy individuals. We further assessed the ability of PentraSorb CRP, an extracorporeal device for the adsorption of CRP, to deplete free CRP and CRP+ EVs. Treatment of septic plasma with the adsorbent in vitro resulted in almost complete removal of both, free CRP and CRP+ EVs, while total EV counts remained largely unaffected, indicating the detachment of CRP from the EV surface. EVs from septic plasma elicited a release of interleukin-8 from cultured human monocytes, which was significantly reduced by adsorbent treatment prior to EV isolation. Our findings provide evidence that CRP+ EVs exhibit pro-inflammatory characteristics and can contribute to the spreading of inflammation throughout the circulation on top of their pro-coagulant activity.


Assuntos
Proteína C-Reativa/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/diagnóstico , Monócitos/metabolismo , Sepse/diagnóstico , Estudos de Casos e Controles , Células Cultivadas , Humanos , Inflamação/metabolismo , Sepse/metabolismo
15.
Front Immunol ; 9: 2797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619243

RESUMO

Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.


Assuntos
Plaquetas/imunologia , Antígeno CD11b/imunologia , Vesículas Extracelulares/imunologia , Leucócitos Mononucleares/imunologia , Fosfatidilserinas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Cálcio/imunologia , Feminino , Humanos , Masculino , Proteínas de Membrana/imunologia
16.
Sci Rep ; 8(1): 6598, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700367

RESUMO

Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14++CD16+) monocytes in whole blood.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Leucócitos/metabolismo , Biomarcadores , Plaquetas/imunologia , Separação Celular/métodos , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Imunofenotipagem , Leucócitos/imunologia , Monócitos/imunologia , Monócitos/metabolismo
17.
PLoS One ; 13(6): e0199204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29898003

RESUMO

BACKGROUND: Regional citrate anticoagulation has been associated with enhanced biocompatibility in hemodialysis, but the optimal dose of citrate remains to be established. Here, we compared parameters related to cellular activation during in vitro dialysis, using two doses of citrate. METHODS: Human whole blood, anticoagulated with either 3 mM or 4 mM of citrate, was recirculated in an in vitro miniaturized dialysis setup. Complement (C3a-desArg), soluble platelet factor 4 (PF4), thromboxane B2 (TXB2), myeloperoxidase (MPO), as well as platelet- and red blood cell-derived extracellular vesicles (EV) were quantified during recirculation. Dialyzer fibers were examined by scanning electron microscopy after recirculation to assess the activation of clotting and the deposition of blood cells. RESULTS: Increases in markers of platelet and leukocyte activation, PF4, TXB2, and MPO were comparable between both citrate groups. Complement activation tended to be lower at higher citrate concentration, but the difference between the two citrate groups did not reach significance. A strong increase in EVs, particularly platelet-derived EVs, was observed during in vitro dialysis for both citrate groups, which was significantly less pronounced in the high citrate group at the end of the experiment. Assessment of dialyzer clotting scores after analysis of individual fibers by scanning electron microscopy revealed significantly lower scores in the high citrate group. CONCLUSIONS: Our data indicate that an increase in the citrate concentration from 3 mM to 4 mM further dampens cellular activation, thereby improving biocompatibility. A concentration of 4 mM citrate might therefore be optimal for use in clinical practice.


Assuntos
Anticoagulantes/farmacologia , Células Sanguíneas/efeitos dos fármacos , Citratos/farmacologia , Adulto , Células Sanguíneas/metabolismo , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Complemento C3a/metabolismo , Diálise , Vesículas Extracelulares/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Microscopia Eletrônica de Varredura , Peroxidase/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/metabolismo , Tromboxano B2/metabolismo
18.
Int J Artif Organs ; 40(1): 9-14, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218355

RESUMO

Sepsis is currently viewed as a fundamental disintegration of control functions from intracellular signalling to immunoregulatory and neuroendocrine mechanisms. The immediate threat in sepsis is invasive infection, and the need to activate immune defense mechanisms to clear the pathogen before irreparable damage occurs. In the process of pathogen elimination, however, the systemic host response to infection may cause collateral damage to the endothelium and may lead to the destruction of host tissues.A number of experimental models have been developed to monitor endothelial activation and to study endothelial dysfunction under septic conditions. Here, we review the application of these models to assess the highly variable host response in sepsis and to investigate the efficacy of adsorbent-based extracorporeal therapies. We also highlight the need for efficient diagnostic tools, which are indispensable to select patients who are likely to benefit from distinct adjunctive therapies.


Assuntos
Endotélio Vascular/fisiopatologia , Sepse/fisiopatologia , Técnicas de Cultura de Células , Endotélio Vascular/imunologia , Humanos , Sepse/imunologia , Transdução de Sinais/fisiologia , Receptores Toll-Like/imunologia
19.
J Biomed Mater Res B Appl Biomater ; 105(3): 636-646, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26671881

RESUMO

Whole blood lipid apheresis is clinically applied in patients with familial hypercholesterolemia to reduce low density lipoprotein and other apolipoprotein B 100 containing lipoproteins. Here, the hemocompatibility of two polyacrylate-coated polyacrylamide-based polymers for lipid apheresis by evaluating the adhesion of blood cells to the adsorbent polymers, their respective activation, as well as the release of microvesicles during circulation of whole blood over the polymers was studied. Characterization of the adsorbents by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy revealed differences with respect to their surface morphology and their surface chemical composition. Despite these differences, equivalent amounts of leukocytes and platelets adhered to both polymers during circulation of whole blood over the adsorbent columns. The release of phosphatidylserine-exposing microvesicles, in contrast, increased significantly with increasing surface roughness and with the amount of polyacrylate groups at the adsorbent surface. The majority of microvesicles generated during blood-material contact were platelet-derived, and their release was associated with enhanced thrombin generation. Microvesicles were present in free and in cell-bound form, and 75% of all monocytes, but only 0.2% and 2.3% of red blood cells and platelets, respectively, were associated with microvesicles, pointing to a role of monocytes in the clearance of released microvesicles. Taken together, microvesicles are sensitive indicators for biomaterial-induced activation of blood cells in apheresis. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 636-646, 2017.


Assuntos
Remoção de Componentes Sanguíneos , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos/metabolismo , Monócitos/metabolismo , Adesividade Plaquetária , Adesão Celular , Feminino , Humanos , Lipídeos/sangue , Masculino
20.
Sci Rep ; 7(1): 6522, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747771

RESUMO

Cells release diverse types of vesicles constitutively or in response to proliferation, injury, inflammation, or stress. Extracellular vesicles (EVs) are crucial in intercellular communication, and there is emerging evidence for their roles in inflammation, cancer, and thrombosis. We investigated the thrombogenicity of platelet-derived EVs, which constitute the majority of circulating EVs in human blood, and assessed the contributions of phosphatidylserine and tissue factor exposure on thrombin generation. Addition of platelet EVs to vesicle-free human plasma induced thrombin generation in a dose-dependent manner, which was efficiently inhibited by annexin V, but not by anti-tissue factor antibodies, indicating that it was primarily due to the exposure of phosphatidylserine on platelet EVs. Platelet EVs exhibited higher thrombogenicity than EVs from unstimulated monocytic THP-1 cells, but blockade of contact activation significantly reduced thrombin generation by platelet EVs. Stimulation of monocytic cells with lipopolysaccharide enhanced their thrombogenicity both in the presence and in the absence of contact activation, and thrombin generation was efficiently blocked by anti-tissue factor antibodies. Our study provides evidence that irrespective of their cellular origin, EVs support the propagation of coagulation via the exposure of phosphatidylserine, while the expression of functional tissue factor on EVs appears to be limited to pathological conditions.


Assuntos
Plaquetas/metabolismo , Vesículas Extracelulares/metabolismo , Fosfatidilserinas/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Humanos , Monócitos/metabolismo , Plasma/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA