Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(14): 8168-8192, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871289

RESUMO

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , RNA de Cadeia Dupla , SARS-CoV-2 , Sítios de Ligação , Proteínas do Nucleocapsídeo de Coronavírus/química , Fosfoproteínas/química , RNA de Cadeia Dupla/genética , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Temperatura
2.
bioRxiv ; 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34159327

RESUMO

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.

3.
Eukaryot Cell ; 7(1): 49-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993575

RESUMO

Sexual development in the human fungal pathogen Cryptococcus neoformans is a multistep process that results in the formation of spores, the likely infectious particles. A critical step in this developmental process is the transition from bud-form growth to filamentous growth. This transition is controlled by the homeodomain transcription factors Sxi1alpha and Sxi2a, whose targets are largely unknown. Here we describe the discovery of a gene, CLP1, that is regulated by Sxi1alpha and Sxi2a and is essential for sexual development. In vitro binding studies also show that the CLP1 promoter is bound directly by Sxi1alpha and Sxi2a. The deletion of CLP1 leads to a block in sexual development after cell fusion but before filament formation, and cells without CLP1 are unable to grow vegetatively after cell fusion. Our findings lead to a model in which CLP1 is a downstream target of the Sxi proteins that functions to promote growth after mating and to establish the filamentous state, a critical step in the production of spores.


Assuntos
Cryptococcus neoformans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Northern Blotting , Southern Blotting , Cryptococcus neoformans/patogenicidade , Diploide , Ensaio de Desvio de Mobilidade Eletroforética , Carpóforos , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética , Fenótipo , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA