Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
2.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508234

RESUMO

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Assuntos
Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glomerulosclerose Segmentar e Focal/genética , Espaço Intranuclear/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Códon sem Sentido , Deficiências do Desenvolvimento/metabolismo , Epilepsia/metabolismo , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Podócitos/metabolismo , Sequenciamento do Exoma
3.
Epilepsia ; 65(3): 709-724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231304

RESUMO

OBJECTIVE: KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS: Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS: Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE: This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Eletroencefalografia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Convulsões
4.
Mol Psychiatry ; 27(3): 1729-1741, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35169261

RESUMO

Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.


Assuntos
Deficiência Intelectual , Mutação , Receptores de GABA-A , Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Humanos , Deficiência Intelectual/genética , Camundongos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Síndrome , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
5.
Brain ; 145(5): 1668-1683, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190816

RESUMO

Disease-causing variants in STXBP1 are among the most common genetic causes of neurodevelopmental disorders. However, the phenotypic spectrum in STXBP1-related disorders is wide and clear correlations between variant type and clinical features have not been observed so far. Here, we harmonized clinical data across 534 individuals with STXBP1-related disorders and analysed 19 973 derived phenotypic terms, including phenotypes of 253 individuals previously unreported in the scientific literature. The overall phenotypic landscape in STXBP1-related disorders is characterized by neurodevelopmental abnormalities in 95% and seizures in 89% of individuals, including focal-onset seizures as the most common seizure type (47%). More than 88% of individuals with STXBP1-related disorders have seizure onset in the first year of life, including neonatal seizure onset in 47%. Individuals with protein-truncating variants and deletions in STXBP1 (n = 261) were almost twice as likely to present with West syndrome and were more phenotypically similar than expected by chance. Five genetic hotspots with recurrent variants were identified in more than 10 individuals, including p.Arg406Cys/His (n = 40), p.Arg292Cys/His/Leu/Pro (n = 30), p.Arg551Cys/Gly/His/Leu (n = 24), p.Pro139Leu (n = 12), and p.Arg190Trp (n = 11). None of the recurrent variants were significantly associated with distinct electroclinical syndromes, single phenotypic features, or showed overall clinical similarity, indicating that the baseline variability in STXBP1-related disorders is too high for discrete phenotypic subgroups to emerge. We then reconstructed the seizure history in 62 individuals with STXBP1-related disorders in detail, retrospectively assigning seizure type and seizure frequency monthly across 4433 time intervals, and retrieved 251 anti-seizure medication prescriptions from the electronic medical records. We demonstrate a dynamic pattern of seizure control and complex interplay with response to specific medications particularly in the first year of life when seizures in STXBP1-related disorders are the most prominent. Adrenocorticotropic hormone and phenobarbital were more likely to initially reduce seizure frequency in infantile spasms and focal seizures compared to other treatment options, while the ketogenic diet was most effective in maintaining seizure freedom. In summary, we demonstrate how the multidimensional spectrum of phenotypic features in STXBP1-related disorders can be assessed using a computational phenotype framework to facilitate the development of future precision-medicine approaches.


Assuntos
Epilepsia , Espasmos Infantis , Eletroencefalografia , Epilepsia/genética , Humanos , Lactente , Proteínas Munc18/genética , Estudos Retrospectivos , Convulsões/genética , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética
6.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34930816

RESUMO

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Assuntos
Proteínas Argonautas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Aminoácidos/genética , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro , Proteínas Argonautas/genética
7.
N Engl J Med ; 381(17): 1644-1652, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31597037

RESUMO

Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).


Assuntos
Proteínas de Membrana Transportadoras/genética , Mutagênese Insercional , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Oligonucleotídeos Antissenso/uso terapêutico , Medicina de Precisão , Doenças Raras/tratamento farmacológico , Biópsia , Criança , Desenvolvimento Infantil , Descoberta de Drogas , Drogas em Investigação/uso terapêutico , Eletroencefalografia , Feminino , Humanos , Testes Neuropsicológicos , RNA Mensageiro , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Pele/patologia , Sequenciamento Completo do Genoma
8.
Genet Med ; 24(11): 2240-2248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997716

RESUMO

PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.


Assuntos
Encéfalo , Anormalidades Congênitas , Variação Genética , Genoma Humano , Humanos , Encéfalo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Anormalidades Congênitas/genética , Testes Genéticos , Variação Genética/genética , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
9.
Ann Neurol ; 89(3): 573-586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325057

RESUMO

OBJECTIVE: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABAA ) receptor subunit ß2. METHODS: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system. RESULTS: Our cohort of 25 individuals from 22 families with variants in GABRB2 demonstrated a range of epilepsy phenotypes from genetic generalized epilepsy to developmental and epileptic encephalopathy. Fifty-eight percent of individuals had pharmacoresistant epilepsy; response to medications targeting the GABAergic pathway was inconsistent. Developmental disability (present in 84%) ranged from mild intellectual disability to severe global disability; movement disorders (present in 44%) included choreoathetosis, dystonia, and ataxia. Disease-associated variants cluster in the extracellular N-terminus and transmembrane domains 1-3, with more severe phenotypes seen in association with variants in transmembrane domains 1 and 2 and the allosteric binding site between transmembrane domains 2 and 3. Functional analysis of 4 variants in transmembrane domains 1 or 2 (p.Ile246Thr, p.Pro252Leu, p.Ile288Ser, p.Val282Ala) revealed strongly reduced amplitudes of GABA-evoked anionic currents. INTERPRETATION: GABRB2-related epilepsy ranges broadly in severity from genetic generalized epilepsy to developmental and epileptic encephalopathies. Developmental disability and movement disorder are key features. The phenotypic spectrum is comparable to other GABAA receptor-encoding genes. Phenotypic severity varies by protein domain. Experimental evidence supports loss of GABAergic inhibition as the mechanism underlying GABRB2-associated neurodevelopmental disorders. ANN NEUROL 2021;89:573-586.


Assuntos
Epilepsia/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Ataxia/genética , Ataxia/fisiopatologia , Atetose/genética , Atetose/fisiopatologia , Criança , Pré-Escolar , Coreia/genética , Coreia/fisiopatologia , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/fisiopatologia , Distonia/genética , Distonia/fisiopatologia , Epilepsia/genética , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Oócitos , Técnicas de Patch-Clamp , Fenótipo , Domínios Proteicos/genética , Xenopus laevis , Adulto Jovem
10.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
11.
Am J Med Genet A ; 188(12): 3516-3524, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35934918

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.


Assuntos
Síndromes Epilépticas , Espasmos Infantis , Masculino , Feminino , Humanos , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/complicações , Síndromes Epilépticas/genética , Fenótipo , Encéfalo , Proteínas Serina-Treonina Quinases/genética
12.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656858

RESUMO

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Assuntos
Doenças Cerebelares/genética , Epilepsia Generalizada/genética , Fácies , Mutação de Sentido Incorreto/genética , Proteínas de Transporte Vesicular/genética , Idade de Início , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo
13.
Ann Neurol ; 85(6): 921-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30937933

RESUMO

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count. ANN NEUROL 2019;85:921-926.


Assuntos
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Transportador 2 de Aminoácido Excitatório/genética , Variação Genética/genética , Sequência de Aminoácidos , Ceftriaxona/uso terapêutico , Pré-Escolar , Epilepsia Generalizada/tratamento farmacológico , Transportador 2 de Aminoácido Excitatório/química , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Estrutura Secundária de Proteína
14.
Epilepsia ; 61(2): 249-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957018

RESUMO

OBJECTIVE: We evaluated the yield of systematic analysis and/or reanalysis of whole exome sequencing (WES) data from a cohort of well-phenotyped pediatric patients with epilepsy and suspected but previously undetermined genetic etiology. METHODS: We identified and phenotyped 125 participants with pediatric epilepsy. Etiology was unexplained at the time of enrollment despite clinical testing, which included chromosomal microarray (57 patients), epilepsy gene panel (n = 48), both (n = 28), or WES (n = 8). Clinical epilepsy diagnoses included developmental and epileptic encephalopathy (DEE), febrile infection-related epilepsy syndrome, Rasmussen encephalitis, and other focal and generalized epilepsies. We analyzed WES data and compared the yield in participants with and without prior clinical genetic testing. RESULTS: Overall, we identified pathogenic or likely pathogenic variants in 40% (50/125) of our study participants. Nine patients with DEE had genetic variants in recently published genes that had not been recognized as epilepsy-related at the time of clinical testing (FGF12, GABBR1, GABBR2, ITPA, KAT6A, PTPN23, RHOBTB2, SATB2), and eight patients had genetic variants in candidate epilepsy genes (CAMTA1, FAT3, GABRA6, HUWE1, PTCHD1). Ninety participants had concomitant or subsequent clinical genetic testing, which was ultimately explanatory for 26% (23/90). Of the 67 participants whose molecular diagnoses were "unsolved" through clinical genetic testing, we identified pathogenic or likely pathogenic variants in 17 (25%). SIGNIFICANCE: Our data argue for early consideration of WES with iterative reanalysis for patients with epilepsy, particularly those with DEE or epilepsy with intellectual disability. Rigorous analysis of WES data of well-phenotyped patients with epilepsy leads to a broader understanding of gene-specific phenotypic spectra as well as candidate disease gene identification. We illustrate the dynamic nature of genetic diagnosis over time, with analysis and in some cases reanalysis of exome data leading to the identification of disease-associated variants among participants with previously nondiagnostic results from a variety of clinical testing strategies.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Exoma/genética , Adolescente , Adulto , Idade de Início , Encefalopatias/etiologia , Encefalopatias/genética , Criança , Pré-Escolar , Cromossomos Humanos/genética , Estudos de Coortes , Epilepsia/complicações , Epilepsia Generalizada/genética , Feminino , Testes Genéticos , Variação Genética , Humanos , Lactente , Masculino , Análise em Microsséries , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
15.
Brain ; 142(10): 3009-3027, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504254

RESUMO

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.


Assuntos
Epilepsia Generalizada/genética , Receptores de N-Metil-D-Aspartato/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Criança , Pré-Escolar , Epilepsia Generalizada/fisiopatologia , Feminino , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/genética
16.
Mol Genet Metab ; 123(3): 317-325, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29279279

RESUMO

Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Aspartato-Amônia Ligase/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Deficiência Intelectual/genética , Convulsões/genética , Arginina/genética , Asparagina/biossíntese , Aspartato-Amônia Ligase/deficiência , Sítios de Ligação/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Glutamina/genética , Glutamina/metabolismo , Homozigoto , Humanos , Masculino , Modelos Moleculares , Mutação , Irmãos
17.
Epilepsia ; 59(3): 679-689, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377098

RESUMO

OBJECTIVE: To characterize the features associated with PCDH19-related epilepsy, also known as "female-limited epilepsy." METHODS: We analyzed data from participants enrolled in the PCDH19 Registry, focusing on the seizure-related, developmental, neurobehavioral, and sleep-related features. We evaluated variants for pathogenicity based on previous reports, population databases, and in silico predictions, and included individuals with pathogenic or potentially pathogenic variants. We performed a retrospective analysis of medical records and administered a targeted questionnaire to characterize current or past features in probands and genotype-positive family members. RESULTS: We included 38 individuals with pathogenic or potentially pathogenic variants in PCDH19: 21 de novo, 5 maternally inherited, 7 paternally inherited, and 5 unknown. All 38 had epilepsy; seizure burden varied, but typical features of clustering of seizures and association with fever were present. Thirty individuals had intellectual disability (ID), with a wide range of severity reported; notably, 8/38 (22%) had average intellect. Behavioral and sleep dysregulation were prominent, in 29/38 (76%) and 20/38 (53%), respectively. Autistic features were present in 22/38 (58%), of whom 12 had a formal diagnosis of autism spectrum disorder. We had additional data from 5 genotype-positive mothers, all with average intellect and 3 with epilepsy, and from 1 genotype-positive father. SIGNIFICANCE: Our series represents a robust cohort with carefully curated PCDH19 variants. We observed seizures as a core feature with a range of seizure types and severity. Whereas the majority of individuals had ID, we highlight the possibility of average intellect in the setting of PCDH19-related epilepsy. We also note the high prevalence and severity of neurobehavioral phenotypes associated with likely pathogenic variants in PCDH19. Sleep dysregulation was also a major area of concern. Our data emphasize the importance of appropriate referrals for formal neuropsychological evaluations as well as the need for formal prospective studies to characterize the PCDH19-related neurodevelopmental syndrome in children and their genotype-positive parents.


Assuntos
Caderinas/genética , Epilepsia/genética , Epilepsia/psicologia , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/psicologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/diagnóstico , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Testes Neuropsicológicos , Linhagem , Protocaderinas , Sistema de Registros , Estudos Retrospectivos , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/psicologia , Adulto Jovem
19.
Ann Neurol ; 76(4): 581-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044251

RESUMO

OBJECTIVE: Recently, Christianson syndrome (CS) has been determined to be caused by mutations in the X-linked Na(+) /H(+) exchanger 6 (NHE6). We aimed to determine the diagnostic criteria and mutational spectrum for CS. METHODS: Twelve independent pedigrees (14 boys, age = 4-19 years) with mutations in NHE6 were administered standardized research assessments, and mutations were characterized. RESULTS: The mutational spectrum was composed of 9 single nucleotide variants, 2 indels, and 1 copy number variation deletion. All mutations were protein-truncating or splicing mutations. We identified 2 recurrent mutations (c.1498 c>t, p.R500X; and c.1710 g>a, p.W570X). Otherwise, all mutations were unique. In our study, 7 of 12 mutations (58%) were de novo, in contrast to prior literature wherein mutations were largely inherited. We also report prominent neurological, medical, and behavioral symptoms. All CS participants were nonverbal and had intellectual disability, epilepsy, and ataxia. Many had prior diagnoses of autism and/or Angelman syndrome. Other neurologic symptoms included eye movement abnormalities (79%), postnatal microcephaly (92%), and magnetic resonance imaging evidence of cerebellar atrophy (33%). Regression was noted in 50%, with recurrent presentations involving loss of words and/or the ability to walk. Medical symptoms, particularly gastrointestinal symptoms, were common. Height and body mass index measures were below normal ranges in most participants. Behavioral symptoms included hyperkinetic behavior (100%), and a majority exhibited high pain threshold. INTERPRETATION: This is the largest cohort of independent CS pedigrees reported. We propose diagnostic criteria for CS. CS represents a novel neurogenetic disorder with general relevance to autism, intellectual disability, Angelman syndrome, epilepsy, and regression.


Assuntos
Ataxia/complicações , Ataxia/genética , Deficiências do Desenvolvimento/genética , Epilepsia/complicações , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Microcefalia/complicações , Microcefalia/genética , Mutação/genética , Transtornos da Motilidade Ocular/complicações , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Adolescente , Ataxia/patologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Progressão da Doença , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/patologia , Transtornos da Motilidade Ocular/patologia , Fenótipo , Análise de Regressão , Adulto Jovem
20.
Curr Neurol Neurosci Rep ; 15(7): 39, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26008807

RESUMO

While genetic causes of epilepsy have been hypothesized from the time of Hippocrates, the advent of new genetic technologies has played a tremendous role in elucidating a growing number of specific genetic causes for the epilepsies. This progress has contributed vastly to our recognition of the epilepsies as a diverse group of disorders, the genetic mechanisms of which are heterogeneous. Genotype-phenotype correlation, however, is not always clear. Nonetheless, the developments in genetic diagnosis raise the promise of a future of personalized medicine. Multiple genetic tests are now available, but there is no one test for all possible genetic mutations, and the balance between cost and benefit must be weighed. A genetic diagnosis, however, can provide valuable information regarding comorbidities, prognosis, and even treatment, as well as allow for genetic counseling. In this review, we will discuss the genetic mechanisms of the epilepsies as well as the specifics of particular genetic epilepsy syndromes. We will include an overview of the available genetic testing methods, the application of clinical knowledge into the selection of genetic testing, genotype-phenotype correlations of epileptic disorders, and therapeutic advances as well as a discussion of the importance of genetic counseling.


Assuntos
Epilepsia/genética , Animais , Canalopatias/genética , Epilepsia/tratamento farmacológico , Aconselhamento Genético , Testes Genéticos , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA