RESUMO
The Neoproterozoic Era was characterized by rapidly changing paleogeography, global climate changes and especially by the rise and fall of the Ediacaran macro-biota. The correlation between disparate Ediacaran fossil-bearing localities and the tentative reconstruction of their paleoenvironmental and paleogeographic contexts are usually complicated by the lack of precise and accurate age data. For this reason, Neoproterozoic sedimentary sections associating Ediacaran biota fossils and fresh volcanic material are especially valuable for radioisotopic dating. Our research in the Podolya Basin, southwestern Ukraine, revealed the presence of four Neoproterozoic volcanic ash deposits (potassium-bentonite layers) within Ediacaran fossil-bearing siliciclastic rocks of the Mohyliv-Podilskyi Group. We used zircon U-Pb LA-ICPMS and CA-ID-TIMS methods to date two of those layers. The results indicate that a diverse assemblage of body and trace Ediacaran fossils occurred as early as 556.78 ± 0.18 million years (Ma) ago. By combining morphological evidence and new age determinations, we suggest a closer paleobiogeographical relationship between the Ukrainian Ediacaran assemblage and the Avalon paleocontinent than previously estimated.
RESUMO
Crystallography has a long history of providing knowledge and methods for applications in other disciplines. The identification of minerals using X-ray diffraction is one of the most important contributions of crystallography to earth sciences. However, when the crystal itself has been dissolved, replaced or deeply modified during the geological history of the rocks, diffraction information is not available. Instead, the morphology of the crystal cast provides the only crystallographic information on the original mineral phase and the environment of crystal growth. This article reports an investigation of crystal pseudomorphs and crystal casts found in a carbonate-chert facies from the 3.48â Ga-old Dresser Formation (Pilbara Craton, Australia), considered to host some of the oldest remnants of life. A combination of X-ray microtomography, energy-dispersive X-ray spectroscopy and crystallographic methods has been used to reveal the original phases of these Archean pseudomorphs. It is found with a high degree of confidence that the original crystals forming in Archean times were hollow aragonite, the high-temperature polymorphs of calcium carbonate, rather than other possible alternatives such as gypsum (CaSO4·2H20) and nahcolite (NaHCO3). The methodology used is described in detail.