Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999157

RESUMO

This review is dedicated to sustainable practices in liquid chromatography. HPLC and UHPLC methods contribute significantly to routine analytical techniques. Therefore, the transfer of classical liquid chromatographic methods into sustainable ones is of utmost importance in moving toward sustainable development goals. Among other principles to render a liquid chromatographic method green, the substitution of the organic solvent component in the mobile phase with a greener one received great attention. This review concentrates on choosing the best alternative green organic solvent to replace the classical solvent in the mobile phase for easy, rapid transfer to a more sustainable normal phase or reversed-phase liquid chromatography. The main focus of this review will be on describing the transfer of non-green to green and white chromatographic methods in an effort to elevate sustainability best practices in analytical chemistry. The greenness properties and greenness ranking, in addition to the chromatographic suitability of seventeen organic solvents for liquid chromatography, are mentioned to have a clear insight into the issue of rapidly choosing the appropriate solvent to transfer a classical HPLC or UHPLC method into a more sustainable one. A simple guide is proposed for making the liquid chromatographic method more sustainable.

2.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
3.
Electrophoresis ; 44(13-14): 1114-1142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37043774

RESUMO

The process of choosing the most proper technique for studying the molecular interactions is based on critical factors such as instrumentation complexity, automation, experimental procedures, analysis time, consumables, and cost-value. This review has tracked the use of affinity capillary electrophoresis (ACE) and microscale thermophoresis (MST) techniques in the evaluation of molecular binding among different molecules during the 5 years 2016-2021. ACE has proved to be an attractive technique for biomolecular characterization with high resolution efficiency where small variations in several controlling factors can much improve such efficiency compared to other analytical techniques. Meanwhile, MST has proved its higher sensitivity for smaller amounts of complex non-purified biosamples without affecting its robustness while providing high through output. However, the main motivation to review both techniques in the proposed review was their capability to carry out all experiments without the need for immobilizing one interacting partner, besides a great flexibility in the use of buffering systems. The proposed review demonstrates the importance of both techniques in different areas of life sciences. Moreover, the recent advances in exploiting ACE and MST in other research interests have been discussed.


Assuntos
Eletroforese Capilar , Eletroforese Capilar/métodos , Ligação Proteica
4.
Anal Bioanal Chem ; 415(22): 5529-5538, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37432444

RESUMO

Copper (Cu) plays a role in maintaining healthy nerve cells and the immune system. Osteoporosis is a high-risk factor for Cu deficiency. In the proposed research, unique green, fluorescent cysteine-doped MnO2 quantum dots (Cys@MnO2 QDs) were synthesized and assessed for the determination of Cu in different food and hair samples. The developed quantum dots were synthesized with the help of cysteine using a straightforward ultrasonic approach to create 3D fluorescent Cys@MnO2 QDs. The resulting QDs' morphological and optical characteristics were carefully characterized. By adding Cu ions, the intensity of fluorescence for the produced Cys@MnO2 QDs was found to be dramatically reduced. Additionally, the applicability of Cys@MnO2 QDs as a new luminous nanoprobe was found to be strengthened by the quenching effect grounded on the Cu-S bonding. The concentrations of Cu2+ ions were estimated within the range of 0.06 to 7.00 µg mL-1, with limit of quantitation equal to 33.33 ng mL-1 and detection limit equal to 10.97 ng mL-1. The Cys@MnO2 QD technique was applied successfully for the quantification of Cu in a variety of foods, including chicken meat, turkey, and tinned fish, as well as in human hair samples. The chance that this novel technique could be a useful tool for figuring out the amount of cysteine in bio-samples is increased by the sensing system's remarkable advantages, which include being rapid, simple, and economical.


Assuntos
Pontos Quânticos , Cobre/química , Pontos Quânticos/química , Cisteína/química , Espectrometria de Fluorescência/métodos , Fatores de Tempo
5.
Biomed Chromatogr ; 37(9): e5664, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37114598

RESUMO

In this study, the development and validation of an accurate and highly sensitive LC-MS/MS method were performed for the estimation of nifedipine, bisoprolol and captopril in real human plasma. Liquid-liquid extraction using tert-butyl methyl ether was efficiently applied for extraction of the analytes from plasma samples. The chromatographic separation was carried out using an isocratic elution mode on the X-terra MS C18 column (4.6 × 50 mm, 3.5 µm). The mobile phase consisted of methanol-0.1% formic acid (95:5, v/v) for determination of nifedipine and bisoprolol and acetonitrile-0.1% formic acid (70:30, v/v) for determination of captopril with a flow rate of 0.5 ml/min. Acceptable results regarding the different validation characteristics of the analytes were obtained in accordance with US Food and Drug Administration recommendations for bioanalytical methods. The developed approach was linear over concentration ranges of 0.5-130.0, 50.0-4,500.0 and 0.3-30.0 ng/ml for nifedipine, captopril and bisoprolol, respectively. The method revealed a sufficient lower limit of quantification in the range of 0.3-50.0 ng/ml, as well as high recovery percentages, indicating high bioanalytical applicability. The proposed method was efficiently applied to a pharmacokinetic evaluation of a fixed-dose combination of the analytes in healthy male volunteers.


Assuntos
Bisoprolol , Captopril , Humanos , Masculino , Cromatografia Líquida/métodos , Nifedipino , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes
6.
Arch Pharm (Weinheim) ; 356(6): e2300005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010439

RESUMO

The endemicity of the pandemic coronavirus disease 2019 (COVID-19) infection proved to be transitional only. Spikes are forming again in 2023, and high expectations are returning for reinfections and viral mutations. Molnupiravir (MOL) has been approved as an oral antiviral drug for the treatment of the COVID-19 causative virion. Therefore, the development of an ultrasensitive, instantaneous, and cost-effective method for the quantification of MOL in real plasma samples and formulated dosage form are mandatory. The proposed approach is based on the synthesis of a MOL metal-chelation product. MOL as a ligand was chelated with 1.0 mM zinc(II) in an acetate buffer (pH 5.3). After illumination at 340 nm, the intensity of the MOL fluorescence measured at 386 nm was increased by about 10-fold. The linearity range was found to be from 60.0 to 800.0 ng mL-1 with limit of quantitation (LOQ) of 28.6 ng mL-1 . Two methods were utilized for measuring the greenness of the proposed method (Green Analytical Procedure Index [GAPI] and analytical greenness metric [AGREE] methods), with results equal to 0.8. The binding stoichiometry of MOL with the zinc(II) ion was found to be 2:1. All the experimental parameters were optimized and validated using International Conference on Harmonization (ICH) and United States Food and Drug Administration (US-FDA) recommendations. Furthermore, the fluorescent probes were successfully utilized in real human plasma with high percentages of recovery (95.6%-97.1%) without any matrix interferences. The mechanism of fluorescent complex formation was confirmed using 1 H NMR in the presence and absence of Zn(II). The method was further utilized for testing content uniformity of MOL in its marketed capsule dosage forms.


Assuntos
COVID-19 , Zinco , Humanos , Espectrometria de Fluorescência/métodos , Relação Estrutura-Atividade , Preparações Farmacêuticas
7.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903432

RESUMO

Four eco-friendly, cost-effective, and fast stability-indicating UV-VIS spectrophotometric methods were validated for cefotaxime sodium (CFX) determination either in the presence of its acidic or alkaline degradation products. The applied methods used multivariate chemometry, namely, classical least square (CLS), principal component regression (PCR), partial least square (PLS), and genetic algorithm-partial least square (GA-PLS), to resolve the analytes' spectral overlap. The spectral zone for the studied mixtures was within the range from 220 to 320 nm at a 1 nm interval. The selected region showed severe overlap in the UV spectra of cefotaxime sodium and its acidic or alkaline degradation products. Seventeen mixtures were used for the models' construction, and eight were used as an external validation set. For the PLS and GA-PLS models, a number of latent factors were determined as a pre-step before the models' construction and found to be three for the (CFX/acidic degradants) mixture and two for the (CFX/alkaline degradants) mixture. For GA-PLS, spectral points were minimized to around 45% of the PLS models. The root mean square errors of prediction were found to be (0.19, 0.29, 0.47, and 0.20) for the (CFX/acidic degradants) mixture and (0.21, 0.21, 0.21, and 0.22) for the (CFX/alkaline degradants) mixture for CLS, PCR, PLS, and GA-PLS, respectively, indicating the excellent accuracy and precision of the developed models. The linear concentration range was studied within 12-20 µg mL-1 for CFX in both mixtures. The validity of the developed models was also judged using other different calculated tools such as root mean square error of cross validation, percentage recoveries, standard deviations, and correlation coefficients, which indicated excellent results. The developed methods were also applied to the determination of cefotaxime sodium in marketed vials, with satisfactory results. The results were statistically compared to the reported method, revealing no significant differences. Furthermore, the greenness profiles of the proposed methods were assessed using the GAPI and AGREE metrics.


Assuntos
Cefotaxima , Quimiometria , Espectrofotometria/métodos , Análise dos Mínimos Quadrados
8.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513344

RESUMO

Plaque psoriasis is a common, long-lasting illness that affects the immune system and causes significant negative impacts on a patient's physical health, well-being, and ability to work effectively. Deucravacitinib (DEU) is the first oral medication used in the treatment of plaque psoriasis, a chronic skin condition that causes red, scaly patches on the skin. DEU is a type of medication called an oral Janus kinase (JAK) inhibitor, which works by blocking specific enzymes that play a role in the inflammation and immune response associated with psoriasis. Therefore, a quick, easy, novel, reliable, sensitive, and straightforward liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to analyze DEU in plasma samples. The LC-MS/MS method for the determination of DEU in human plasma was based on using trimethoprim as an internal standard (IS). The separation of DEU and IS was carried out via liquid-liquid extraction (LLE). The extract was then subjected to the chromatographic system separation using the ACE-C18 column (4.6 × 100 mm, 5 µm). The mobile phase employed consisted of methanol and a solution of 2 mM ammonium formate (80:20 v/v, respectively). The flow rate used was set at 0.9 mL min-1. The creative strategy was performed by running an ABSCIEX API 4000 mass spectrometer with an electron spray ionization source in multiple reaction monitoring (MRM) mode. The ion transitions m/z 426.3 → 358.2 were used for DEU quantitation, while the ion transitions m/z 291.1 → 261.1 were used for trimethoprim quantitation. The accuracy, precision, linearity, recovery, and selectivity of DEU were deemed acceptable when validated for a concentration range between 0.500 and 601.050 ng/mL, utilizing a weighting factor of 1/x2.


Assuntos
Psoríase , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes
9.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744781

RESUMO

In 2018, the discovery of carcinogenic nitrosamine process related impurities (PRIs) in a group of widely used drugs led to the recall and complete withdrawal of several medications that were consumed for a long time, unaware of the presence of these genotoxic PRIs. Since then, PRIs that arise during the manufacturing process of the active pharmaceutical ingredients (APIs), together with their degradation impurities, have gained the attention of analytical chemistry researchers. In 2020, favipiravir (FVR) was found to have an effective antiviral activity against the SARS-COVID-19 virus. Therefore, it was included in the COVID-19 treatment protocols and was consequently globally manufactured at large-scales during the pandemic. There is information indigence about FVR impurity profiling, and until now, no method has been reported for the simultaneous determination of FVR together with its PRIs. In this study, five advanced multi-level design models were developed and validated for the simultaneous determination of FVR and two PRIs, namely; (6-chloro-3-hydroxypyrazine-2-carboxamide) and (3,6-dichloro-pyrazine-2-carbonitrile). The five developed models were classical least square (CLS), principal component regression (PCR), partial least squares (PLS), genetic algorithm-partial least squares (GA-PLS), and artificial neural networks (ANN). Five concentration levels of each compound, chosen according to the linearity range of the target analytes, were used to construct a five-level, three-factor chemometric design, giving rise to twenty-five mixtures. The models resolved the strong spectral overlap in the UV-spectra of the FVR and its PRIs. The PCR and PLS models exhibited the best performances, while PLS proved the highest sensitivity relative to the other models.


Assuntos
Tratamento Farmacológico da COVID-19 , Algoritmos , Amidas , Antivirais/farmacologia , Antivirais/uso terapêutico , Calibragem , Humanos , Análise dos Mínimos Quadrados , Pirazinas/uso terapêutico
10.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956942

RESUMO

Carvedilol (CAR), a racemic lipophilic aryloxy propanolamine, acts as a selective α1-adrenoreceptor antagonist and a nonselective ß-adrenoreceptor antagonist. CAR metabolism mainly produces three active metabolites: desmethyl carvedilol (DMC), 4'-hydroxy carvedilol (4'OHC) and 5'-hydroxy carvedilol (5'OHC). The oxidative S-(-)-metabolites contribute to the ß-antagonistic effect, yet not to the α-antagonistic effect to be observed after drug dosage. Therefore, the three ß-adrenoceptor blocking metabolites, which are structurally closely related to the parent CAR, are included into the development of a bioanalytical quantitative method for all major active species relevant with respect to adrenoceptor-blockade. Because of the given pharmacological profile, resolution of the enantiomers of carvedilol, of 4'- and 5'-hydroxy carvedilol as well as of DMC, is mandatory. The current study aims to determine the response surface for the enantiomer separation of the parent CAR as well as the major metabolites on a suitable chiral stationary phase. Design of experiment approach (DoE) was utilized in an initial screening phase followed by central-composite design for delimitation of the response surface for resolution of the four enantiomeric pairs in least run time. The impact of chromatographic variables (composition and percentage of organic modifier(s), buffer type, buffer pH, flow rate) on critical peaks resolution and adjusted retention time was evaluated, in order to select the most significant critical quality attributes. On this basis, a robust UHPLC-UV method was developed and optimized for the simultaneous, enantioselective determination of CAR along with its major active metabolites (4'OHC, 5'OHC, and DMC) on Chiralpak IBN-5. The optimized UHPLC-UV method (which includes metoprolol as the internal standard) was validated according to the ICH M10 guidelines for bioanalytical methods and proven to be linear, precise, accurate, and robust. The validated assay was applied to plasma samples from cardiovascular patients treated with rac-CAR (blood randomly drawn at different times after oral CAR intake). In order to provide more insight into the mechanism of the enantiomer separation of CAR and its metabolites on the CSP, docking experiments were performed. Molecular simulation studies suggest the chiral recognition to be mainly due to different binding poses of enantiomers of the same compound.


Assuntos
Antagonistas Adrenérgicos beta , Propanolaminas , Antagonistas Adrenérgicos beta/química , Carvedilol , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Propanolaminas/química , Receptores Adrenérgicos , Estereoisomerismo
11.
Molecules ; 27(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35408729

RESUMO

Following the spread of the COVID-19 pandemic crisis, a race was initiated to find a successful regimen for postinfections. Among those trials, a recent study declared the efficacy of an antiviral combination of favipiravir (FAV) and molnupiravir (MLP). The combined regimen helped in a successful 60% eradication of the SARS-CoV-2 virus from the lungs of studied hamster models. Moreover, it prevented viral transmission to cohosted sentinels. Because both medications are orally bioavailable, the coformulation of FAV and MLP can be predicted. The developed study is aimed at developing new green and simple methods for the simultaneous determination of FAV and MLP and then at their application in the study of their dissolution behavior if coformulated together. A green micellar HPLC method was validated using an RP-C18 core-shell column (5 µm, 150 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.1 M SDS, 0.01 M Brij-35, and 0.02 M monobasic potassium phosphate mixture and adjusted to pH 3.1 at 1.0 mL min-1 flow rate. The analytes were detected at 230 nm. The run time was less than five minutes under the optimized chromatographic conditions. Four other multivariate chemometric model methods were developed and validated, namely, classical least square (CLS), principal component regression (PCR), partial least squares (PLS-1), and genetic algorithm-partial least squares (GA-PLS-1). The developed models succeeded in resolving the great similarity and overlapping in the FAV and MLP UV spectra unlike the traditional univariate methods. All methods were organic solvent-free, did not require extraction or derivatization steps, and were applied for the construction of the simultaneous dissolution profile for FAV tablets and MLP capsules. The methods revealed that the amount of the simultaneously released cited drugs increases up until reaching a plateau after 15 and 20 min for FAV and MLP, respectively. The greenness was assessed on GAPI and found to be in harmony with green analytical chemistry concepts.


Assuntos
Tratamento Farmacológico da COVID-19 , Amidas , Antivirais/uso terapêutico , Cromatografia Líquida de Alta Pressão/métodos , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Micelas , Pandemias , Pirazinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Espectrofotometria Ultravioleta/métodos
12.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889479

RESUMO

The microscale thermophoresis (MST) technique was utilized to investigate lactoferrin-drug interaction with the iron chelator, deferiprone, using label-free system. MST depends on the intrinsic fluorescence of one interacting partner. The results indicated a significant interaction between lactoferrin and deferiprone. The estimated binding constant for the lactoferrin-deferiprone interaction was 8.9 × 10-6 ± 1.6, SD, which is to be reported for the first time. Such significant binding between lactoferrin and deferiprone may indicate the potentiation of the drug secretion into a lactating mother's milk. The technique showed a fast and simple approach to study protein-drug interaction while avoiding complicated labeling procedures. Moreover, the binding behavior of deferiprone within the binding sites of lactoferrin was investigated through molecular docking which reflected that deferiprone mediates strong hydrogen bonding with ARG121 and ASP297 in pocket 1 and forms H-bond and ionic interaction with ASN640 and ASP395, respectively, in pocket 2 of lactoferrin. Meanwhile, iron ions provide ionic interaction with deferiprone in both of the pockets. The molecular dynamic simulation further confirmed that the binding of deferiprone with lactoferrin brings conformational changes in lactoferrin that is more energetically stable. It also confirmed that deferiprone causes positive correlation motion in the interacting residues of both pockets, with strong negative correlation motion in the loop regions, and thus changes the dynamics of lactoferrin. The MM-GBSA based binding free energy calculation revealed that deferiprone exhibits ∆G TOTAL of -63,163 kcal/mol in pocket 1 and -63,073 kcal/mol in pocket 2 with complex receptor-ligand difference in pocket 1 and pocket 2 of -117.38 kcal/mol and -111.54 kcal/mol, respectively, which in turn suggests that deferiprone binds more strongly in the pocket 1. The free energy landscape of the lactoferrin-deferiprone complex also showed that this complex remains in a high energy state that confirms the strong binding of deferiprone with the lactoferrin. The current research concluded that iron-chelating drugs (deferiprone) can be transported from the mother to the infant in the milk because of the strong attachment with the lactoferrin active pockets.


Assuntos
Lactoferrina , Leite Humano , Deferiprona , Feminino , Humanos , Lactação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
13.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557948

RESUMO

In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites.


Assuntos
Antineoplásicos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Antineoplásicos/farmacologia , Flavonoides/química , População Africana
14.
Medicina (Kaunas) ; 58(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36556921

RESUMO

Background and Objectives: Fibrotic lung disease is one of the main complications of many medical conditions. Therefore, the use of anti-fibrotic agents may provide a chance to prevent, or at least modify, such complication. The aim of this study was to evaluate the protective pulmonary anti-fibrotic and anti-inflammatory effects of Dinebra retroflexa. Materials and methods: Dinebra retroflexa methanolic extract and its synthesized silver nanoparticles were tested on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/5 mL/kg-Saline) as a supposed model for induced lung fibrosis. The weed evaluation was performed by intratracheal instillation of Dinebra retroflexa methanolic extract and its silver nanoparticles (35 mg/100 mL/kg-DMSO, single dose). Results: The results showed that both Dinebra retroflexa methanolic extract and its silver nanoparticles had a significant pulmonary fibrosis retraction potential, with Ashcroft scores of three and one, respectively, and degrees of collagen deposition reduction of 33.8 and 46.1%, respectively. High-resolution UHPLC/Q-TOF-MS/MS metabolic profiling and colorimetrically polyphenolic quantification were performed for further confirmation and explanation of the represented effects. Such activity was believed to be due to the tentative identification of twenty-seven flavonoids and one phenolic acid along with a phenolic content of 57.8 mg/gm (gallic acid equivalent) and flavonoid content of 22.5 mg/gm (quercetin equivalent). Conclusion: Dinebra retroflexa may be considered as a promising anti-fibrotic agent for people at high risk of complicated lung fibrosis. The results proved that further clinical trials would be recommended to confirm the proposed findings.


Assuntos
Nanopartículas Metálicas , Fibrose Pulmonar , Humanos , Ratos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Bleomicina/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Suíça , Espectrometria de Massas em Tandem , Fitoterapia , Pulmão/patologia
15.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064769

RESUMO

This work reviews the literature of chiral capillary electrokinetic chromatography from January 2016 to March 2021. This is done to explore the state-of-the-art approach and recent developments carried out in this field. The separation principle of the technique is described and supported with simple graphical illustrations, showing migration under normal and reversed polarity modes of the separation voltage. The most relevant applications of the technique for enantioseparation of drugs and other enantiomeric molecules in different fields using chiral selectors in single, dual, or multiple systems are highlighted. Measures to improve the detection sensitivity of chiral capillary electrokinetic chromatography with UV detector are discussed, and the alternative aspects are explored, besides special emphases to hyphenation compatibility to mass spectrometry. Partial filling and counter migration techniques are described. Indirect identification of the separated enantiomers and the determination of enantiomeric migration order are mentioned. The application of Quality by Design principles to facilitate method development, optimization, and validation is presented. The elucidation and explanation of chiral recognition in molecular bases are discussed with special focus on the role of molecular modeling.

16.
Molecules ; 26(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34500675

RESUMO

This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector-selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.

17.
J Sep Sci ; 43(20): 3960-3968, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32823373

RESUMO

Mobility shift-affinity capillary electrophoresis was employed for enantioseparation and simultaneous binding constant determination. Human serum albumin was used as a chiral selector in the background electrolyte composed of 20 mM phosphate buffer, pH 7.4. The applied setup supports a high mobility shift since albumin and the drug-albumin complex hold negative net charges, while model compounds of amlodipine and verapamil are positively charged. In order to have an accurate effective mobility determination, the Haarhoff-van der Linde function was utilized. Subsequently, the association constant was determined by nonlinear regression analysis of the dependence of effective mobilities on the total protein concentration. Differences in the apparent binding status between the enantiomers lead to mobility shifts of different extends (α). This resulted in enantioresolutions of Rs = 1.05-3.63 for both drug models. R-(+)-Verapamil (KA 1844 M-1 ) proved to bind stronger to human serum albumin compared to S-(-)-verapamil (KA 6.6 M-1 ). The association constant of S-(-)-amlodipine (KA 25 073 M-1 ) was found to be slightly higher compared to its antipode (KA 22 620 M-1 ) when applying the racemic mixture. The low measurement uncertainty of this approach was demonstrated by the close agreement of the association constant of the enantiopure S-(-)-form (KA 25 101 M-1 ).


Assuntos
Anlodipino/química , Albumina Sérica Humana/química , Verapamil/química , Eletroforese Capilar , Humanos , Estrutura Molecular , Estereoisomerismo
18.
Methods ; 146: 107-119, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29438829

RESUMO

The study of biomolecular interactions is crucial to get more insight into the biological system. The interactions of protein-protein, protein-nucleic acids, protein-sugars, nucleic acid-nucleic acids and protein-small molecules are supporting therapeutics and technological developments. Recently, the development in a large number of analytical techniques for characterizing biomolecular interactions reflect the promising research investments in this field. In this review, microscale thermophoresis technology (MST) is presented as an analytical technique for characterizing biomolecular interactions. Recent years have seen much progress and several applications established. MST is a powerful technique in quantitation of binding events based on the movement of molecules in microscopic temperature gradient. Simplicity, free solutions analysis, low sample volume, short analysis time, and immobilization free are the MST advantages over other competitive techniques. A wide range of studies in biomolecular interactions have been successfully carried out using MST, which tend to the versatility of the technique to use in screening binding events in order to save time, cost and obtained high data quality.


Assuntos
Bioquímica/métodos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Difusão Térmica , Ácidos Nucleicos/química , Proteínas/química , Temperatura
19.
Electrophoresis ; 39(4): 569-580, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29131355

RESUMO

A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/Rf ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments.


Assuntos
Eletroforese Capilar/métodos , Heparinoides/química , Heparinoides/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Humanos , Poliéster Sulfúrico de Pentosana/química , Poliéster Sulfúrico de Pentosana/metabolismo , Ligação Proteica , Temperatura
20.
Electrophoresis ; 38(12): 1560-1571, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28256735

RESUMO

A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/Rf ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments.


Assuntos
Heparinoides/química , Selectina-P/química , Proteínas/química , Sítios de Ligação , Cálcio , Simulação por Computador , Eletroforese Capilar , Íons , Ligantes , Protaminas/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA