Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373340

RESUMO

Diabetes is a chronic fast-growing metabolic disorder that is characterized by high blood glucose levels. Tagetes minuta L. has been used as a traditional remedy for various illnesses for many years, and, furthermore, its oil is used in the perfume and flavor industries. T. minuta contains various metabolites, such as flavonoids, thiophenes, terpenes, sterols, and phenolics, with varied bioactivities. Flavonoids can inhibit carbohydrate-digesting enzymes, such as alpha-amylase, which is a convenient dietary strategy for controlling hyperglycemia. In the current investigation, the isolated flavonoids quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside), quercetagetin-7-O-ß-D-glucopyranoside, quercetagetin-6-O-ß-D-glucopyranoside, minutaside A, patuletin-7-O-ß-D-glucopyranoside, quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside, tagenols A and B, quercetagetin-3,7-dimethoxy-6-O-ß-D-glucopyranoside, patuletin, quercetin-3,6-dimethyl ether, and quercetin-3-methyl ether from T. minuta were assessed for their alpha-amylase inhibition (AAI) efficacy using an in vitro assay, as well as molecular docking, dynamics simulation, and ADMET analyses. Our findings show that quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside) (1), quercetagetin-7-O-ß-D-glucopyranoside (2), quercetagetin-6-O-ß-D-glucopyranoside (3), minutaside A (4), patuletin-7-O-ß-D-glucopyranoside (5), and quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside (6) had a notable AAI capacity (IC50s ranged from 7.8 to 10.1 µM) compared to acarbose (IC50 7.1 µM). Furthermore, these compounds with the highest binding affinity among the tested flavonoids revealed high docking scores for AA (ranging from -12.171 to 13.882 kcal/mol) compared to that of acarbose (-14.668 kcal/mol). In MDS, these compounds were observed to show maximum stability and the greatest binding free energy, suggesting that they may contend with native ligands. In addition, the ADMET analysis showed that these active compounds had a broad span of drug-like, pharmacokinetic, and physicochemical features and did not possess any considerable undesired effects. The current results suggest the potential of these metabolites as AAI candidates. However, further in vivo and mechanistic studies are warranted to specify the efficacy of these metabolites.


Assuntos
Flavonoides , Tagetes , Flavonoides/química , Tagetes/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Amilases , Acarbose , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Bioorg Chem ; 101: 103992, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554279

RESUMO

Thiazole derivatives are known to possess various biological activities such as antiparasitic, antifungal, antimicrobial and antiproliferative activities. Matrix metalloproteinases (MMPs) are important protease target involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have also been reported as potential diagnostic and prognostic biomarkers in many types of cancer. Herein, new aryl thiazoles were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines including the invasive MDA-MB-231 line. Some of these compounds showed IC50 values in the submicromolar range in anti-proliferative assays. In order to examine the relationship between their anticancer activity and MMPs targets, the compounds were evaluated for their inhibitory effects on MMP-2 and 9. That data obtained revealed that most of these compounds were potent dual MMP-2/9 inhibitors at nanomolar concentrations. Among these, 2-(1-(2-(2-((E)-4-iodobenzylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)hydrazine-1-carboximidamide (4a) was the most potent non-selective dual MMP-2/9 inhibitor with inhibitory concentrations of 56 and 38 nM respectively. When compound 4a was tested in an MDA-MB-231, HCT-116, MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibit cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Taken together, the results of our studies indicate that the newly discovered thiazole-based MMP-2/9 inhibitors have significant potential for anticancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Descoberta de Drogas , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
3.
Bioorg Chem ; 101: 103953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474179

RESUMO

Curcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide 8 showed a moderate antiproliferative potency (HCT-116 cell line inhibition of 32.0 µM), no inhibition of normal cell lines C-166, and proven cellular activities leading to apoptosis. SAR studies led to more than 10-fold increase in activity. Our most promising compound, [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] 45 killed colon cancer cells at IC50 = 0.89 µM (Caco-2), 2.85 µM (HCT-116) and 1.65 µM (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 µM and 77.6 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part as a result of oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of covalently acting Michael addition compounds that potently kill cancer cells by a defined mechanism, with prominent selectivity profile over non-cancerous cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cinamatos/farmacologia , Neoplasias do Colo/patologia , Estresse Oxidativo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos
4.
Molecules ; 25(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486455

RESUMO

Infectious diseases are the second major cause of death worldwide, and the ability to resist multiple classes of antibiotics is the key factor in enabling pathogenic organisms to survive and spread in the nosocomial environment. Unfortunately, the available ß-lactamase inhibitors are not efficient against ß-lactamase B, C, and D which necessitates discovering either broad spectrum ß-lactamase inhibitors or new ß-lactam antibiotics resistant to bacterial enzymes. In this regard, products of natural origin have prompted the disclosure of new compounds and medicinal leads. Chloroform fraction of Clutia myricoides (Soa'bor) showed a pronounced activity against extended-spectrum ß-lactamase (ESBL) strains. Bio-guided fractionation resulted in isolation of two new compounds; 2-methoxy chrysophanol (2) and Saudin-I (5) in addition to three known compounds that were identified as chrysophanol (1), stigmasterol (3) and ß-sitosterol (4). Antibacterial and anti ESBL activities of the isolated compounds were performed. No antibacterial activities were detected for any of the tested compounds. Meanwhile, compound 2 showed promising anti ESBL activity. Compound 2 has shown an obvious activity against K. pneumoniae ATCC 700603 with a marked enlargement of inhibition zones (>5mm) in combination with third generation cephalosporin antibiotics. To further understand the mechanism of action of compound 2, molecular docking was carried out against CTX-M-27 ESBL. The results showed binding site interactions strikingly different from its analogue, compound 1, allowing compound 2 to be active against ESBL. These results proposed the concomitant use of these active compounds with antibiotics that would increase their efficiency. Nevertheless, the interaction between this active compound and antibiotics should be taken into consideration. Therefore, in order to evaluate the safety of this active compound, further in vitro and in vivo toxicity assays must be carried out.


Assuntos
Magnoliopsida/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Antibacterianos/farmacologia , Sítios de Ligação , Bioensaio , Cefalosporinas/química , Clorofórmio/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Furanos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de beta-Lactamases/farmacologia
5.
J Enzyme Inhib Med Chem ; 33(1): 755-767, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29651867

RESUMO

In this research, we exploited derivatives of thieno[2,3-b]pyridine as dual inhibitors of the key enzymes in eicosanoid biosynthesis, cyclooxygenase (COX, subtypes 1 and 2) and 5-lipoxygensase (5-LOX). Testing these compounds in a rat paw oedema model revealed potency higher than ibuprofen. The most active compounds 7a, 7b, 8b, and 8c were screened against COX-1/2 and 5-LOX enzymes. Compound 7a was the most powerful inhibitor of 5-LOX with IC50 = 0.15 µM, while its p-chloro analogue 7b was more active against COX-2 (IC50 = 7.5 µM). The less desirable target COX-1 was inhibited more potently by 8c with IC50 = 7.7 µM. Surflex docking programme predicted that the more stable anti- conformer of compound (7a) formed a favourable complex with the active site of 5-LOX but not COX-1. This is in contrast to the binding mode of 8c, which resembles the syn-conformer of series 7 and binds favourably to COX-1.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Edema/tratamento farmacológico , Eicosanoides/antagonistas & inibidores , Inibidores de Lipoxigenase/farmacologia , Piridinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Araquidonato 5-Lipoxigenase/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Eicosanoides/biossíntese , Eicosanoides/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Masculino , Modelos Moleculares , Estrutura Molecular , Prostaglandina-Endoperóxido Sintases/metabolismo , Piridinas/síntese química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Chem Pharm Bull (Tokyo) ; 66(10): 967-975, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30047515

RESUMO

The 2-styryl-3,5-dihydro-4H-imidazol-4-one might be considered as a system with isosteric properties similar to trans-cinnamaldehyde (styrylaldehyde), a safe natural compound that exhibited interesting activities against various cancers. We synthesized a series of compounds that differ structurally in having different alkyl, aryl and heterocyclic substituents at the N3 position of the 2-styryl-4-imidaolone pharmacophore. The compounds were assayed for their cytotoxicity against both cancer and normal cell lines. In addition, their cellular mechanism of action as reactive oxygen species (ROS) inducers were investigated. Many of the synthesized compounds showed higher activities on colon, breast and hepatic cancer cell lines than the parent trans-cinnamaldehyde. Compounds 3a and 3e showed selective antiproliferative activity against cancer cell lines at low micromolar to sub-micromolar IC50 value. Compounds were extremely less toxic on normal cell lines baby hamster kidney fibroblasts (BHK) and human lung tissue fibroblast (WI-38). Similar to trans-cinnamaldehyde, the colon cancer cell cycle analysis indicated cell cycle changes consistent with increased oxidative stress leading to apoptosis. Compound 3e caused elevation of all cell oxidative indicators of ROS such as a decrease in reduced glutathione, increased malondialdehyde and suppression of catalase and superoxide dismutase activities. Dihydroethidium staining, nuclear fragmentation and increased caspase-3 further confirmed extensive apoptotic induction due to ROS accumulation upon treatment of human colon adenocarcinoma (HCT116) cells with compounds 3a and 3e. Changes in human breast adenocarcinoma (MCF7) cells were less revealing for ROS induction and increased oxidative stress. CONCLUSION: The compounds represent an example of efficient rescaffolding of a natural compound to a highly potent drug-like analogues.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Imidazóis/síntese química , Imidazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 32(1): 1143-1151, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856929

RESUMO

Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Quinoxalinas/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Fosfolipases A2 Secretórias/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
8.
Arch Pharm (Weinheim) ; 349(2): 73-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26754591

RESUMO

Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.


Assuntos
Epigênese Genética , Neoplasias/virologia , Vírus Oncogênicos/fisiologia , Infecções Tumorais por Vírus/virologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Transformação Celular Viral , Humanos , Neoplasias/prevenção & controle , Vírus Oncogênicos/genética , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/tratamento farmacológico
9.
Molecules ; 21(8)2016 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-27529207

RESUMO

Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases.


Assuntos
Antidrepanocíticos/química , Hemoglobinas/química , Regulação Alostérica/efeitos dos fármacos , Antidrepanocíticos/síntese química , Antidrepanocíticos/farmacologia , Sítios de Ligação , Ácido Clofíbrico/química , Ácido Clofíbrico/farmacologia , Hemoglobinas/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
Chem Biol Drug Des ; 103(1): e14379, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873688

RESUMO

Designing kinase inhibitors that bind to the substrate site of oncogenic kinases in a promising, albeit less explored, approach to kinase inhibition as it was sought to avoid the issue of untoward off-target modulations. Our previously identified compound KAC-12 with a meta-chlorophenyl substitution was an example of this approach. While it showed confirmed inhibitory activity against cancer cells, this substitution shifted the profile of affected targets away from Src/tubulin which were seen with the parent KX-01. In this paper, we synthesized compounds with ortho-substitutions, and we investigated the effect of such substitutions on their cellular and subcellular activities. The compound N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-2-(morpholine-4-carbonyl)benzamide (4) exhibited substantial activities against cell lines such HCT116 (IC50 of 0.97 µM) and IC50 HL60 (2.84 µM). Kinase profiling showed that compound 4 trended consistently with KAC-12 as it did not affect Src, but it had more impact on members of the Src family of kinases (SFK) such as Yes, Hck, Fyn, Lck, and Lyn. Both compounds exhibited profound downregulation effects on Erk1/2 but differed on others such as GSK3α/ß and C-Jun. Collectively, this study further support to the hypothesis that small structural changes might bring higher changes in their kinome profile.


Assuntos
Benzamidas , Quinases da Família src , Quinases da Família src/metabolismo , Linhagem Celular , Benzamidas/farmacologia
11.
Chem Biol Drug Des ; 103(1): e14371, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798397

RESUMO

Sickle cell disease (SCD) is the most common genetic disorder, affecting millions of people worldwide. Aromatic aldehydes, which increase the oxygen affinity of human hemoglobin to prevent polymerization of sickle hemoglobin and inhibit red blood cell (RBC) sickling, have been the subject of keen interest for the development of effective treatment against SCD. However, the aldehyde functional group metabolic instability has severly hampered their development, except for voxelotor, which was approved in 2019 for SCD treatment. To improve the metabolic stability of aromatic aldehydes, we designed and synthesized novel molecules by incorporating Michael acceptor reactive centers into the previously clinically studied aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF). Eight such derivatives, referred to as MMA compounds were synthesized and studied for their functional and biological activities. Unlike 5-HMF, which forms Schiff-base interaction with αVal1 nitrogen of hemoglobin, the MMA compounds covalently interacted with ßCys93, as evidenced by reverse-phase HPLC and disulfide exchange reaction, explaining their RBC sickling inhibitory activities, which at 2 mM and 5 mM, range from 0% to 21% and 9% to 64%, respectively. Additionally, the MMA compounds showed a second mechanism of sickling inhibition (12%-41% and 13%-62% at 2 mM and 5 mM, respectively) by directly destabilizing the sickle hemoglobin polymer. In vitro studies demonstrated sustained pharmacologic activities of the compounds compared to 5-HMF. These findings hold promise for advancing SCD therapeutics.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Humanos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Hemoglobinas/metabolismo , Hemoglobinas/uso terapêutico , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Furanos , Aldeídos/uso terapêutico , Oxigênio/metabolismo
12.
Front Pharmacol ; 14: 1231671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273823

RESUMO

The epidermal growth factor receptor (EGFR) plays a crucial role in regulating cellular growth and survival, and its dysregulation is implicated in various cancers, making it a prime target for cancer therapy. Natural compounds known as catechins have garnered attention as promising anticancer agents. These compounds exert their anticancer effects through diverse mechanisms, primarily by inhibiting receptor tyrosine kinases (RTKs), a protein family that includes the notable member EGFR. Catechins, characterized by two chiral centers and stereoisomerism, demonstrate variations in chemical and physical properties due to differences in the spatial orientation of atoms. Although previous studies have explored the membrane fluidity effects and transport across cellular membranes, the stereo-selectivity of catechins concerning EGFR kinase inhibition remains unexplored. In this study, we investigated the stereo-selectivity of catechins in inhibiting EGFR kinase, both in its wild-type and in the prevalent L858R mutant. Computational analyses indicated that all stereoisomers, including the extensively studied catechin (-)-EGCG, effectively bound within the ATP-binding site, potentially inhibiting EGFR kinase activity. Notably, gallated catechins emerged as superior EGFR inhibitors to their non-gallated counterparts, revealing intriguing binding trends. The top four stereoisomers exhibiting high dock scores and binding energies with wild-type EGFR comprise (-)-CG (-)-GCG (+)-CG, and (-)-EGCG. To assess dynamic behavior and stability, molecular dynamics simulations over 100 ns were conducted for the top-ranked catechin (-)-CG and the widely investigated catechin (-)-EGCG with EGFR kinase. This study enhances our understanding of how the stereoisomeric nature of a drug influences inhibitory potential, providing insights that could guide the selection of specific stereoisomers for improved efficacy inexisting drugs.

13.
Molecules ; 17(10): 12262-75, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23079497

RESUMO

A series of 2,4-diaryl-5(4H)-imidazolones were prepared and evaluated for their anti-inflammatory activities. Some selected 2,4-diaryl-5(4H)-imidazolones exhibited excellent anti-inflammatory activity in the carrageenan-induced rat paw edema model. Structure Activity Relationships within the series were studied. The substitution at the N-sulfonamide moiety by a small hydrophilic acetyl group resulted in compounds with superior in vivo anti-inflammatory properties. As expected from their COX-2 selectivity, most of the active compounds lacked gastrointestinal toxicity in vivo in rats after a 3-day treatment of 25 mg/kg/day.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Imidazóis/síntese química , Imidazóis/farmacologia , Animais , Anti-Inflamatórios/química , Sítios de Ligação , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Imidazóis/química , Masculino , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade
14.
Food Res Int ; 162(Pt A): 111853, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461268

RESUMO

Artificial sweeteners have become increasingly popular worldwide owing to their lower calorie content in addition to the claims of health benefits such as weight control, blood glucose level regulation in diabetics, and protection against dental caries. Nevertheless, there is still controversy regarding their safety, especially when administered over the long term, taking into account that most of the safety studies are based on animal models and only a few human studies. This review focuses on low-calorie protein/peptide sweeteners. These include artificial sweeteners, i.e. aspartame, advantame, neotame, and alitame which are synthetic, versus those of natural origin such as thaumatin, monellin, brazzein, pentadin, mabinlin, curculin, and egg white lysozyme. We conducted a systematic literature survey to ensure the accuracy of the data regarding the chemical properties, synthesis, and industrial applications. The health benefits and safety of these sweeteners in humans are presented for the first time in context to their metabolic profiles and gut interaction.


Assuntos
Cárie Dentária , Edulcorantes , Animais , Humanos , Edulcorantes/efeitos adversos , Doces , Dipeptídeos , Aspartame/efeitos adversos
15.
Front Oncol ; 12: 879457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669422

RESUMO

Tirbanibulin (KX2-391, KX-01), a dual non-ATP (substrate site) Src kinase and tubulin-polymerization inhibitor, demonstrated a universal anti-cancer activity for variety of cancer types. The notion that KX2-391 is a highly selective Src kinase inhibitor have been challenged by recent reports on the activities of this drug against FLT3-ITD mutations in some leukemic cell lines. Therefore, we hypothesized that analogues of KX2-391 may inhibit oncogenic kinases other than Src. A set of 4-aroylaminophenyl-N-benzylacetamides were synthesized and found to be more active against leukemia cell lines compared to solid tumor cell lines. N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-4-chlorobenzamide (4e) exhibited activities at IC50 0.96 µM, 1.62 µM, 1.90 µM and 4.23 µM against NB4, HL60, MV4-11 and K562 leukemia cell lines, respectively. We found that underlying mechanisms of 4e did not include tubulin polymerization or Src inhibition. Such results interestingly suggested that scaffold-hopping of KX2-391 may change the two main underlying cytotoxic mechanisms (Src and tubulin). Kinase profiling using two methods revealed that 4e significantly reduces the activities of some other potent oncogenic kinases like the MAPK member ERK1/2 (>99%) and it also greatly upregulates the pro-apoptotic c-Jun kinase (84%). This research also underscores the importance of thorough investigation of total kinase activities as part of the structure-activity relationship studies.

16.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452107

RESUMO

BACKGROUND: Aromatic aldehydes, with their ability to increase the oxygen affinity of sickle hemoglobin, have become important therapeutic agents for sickle cell disease (SCD). One such compound, voxelotor, was recently approved for SCD treatment. Methyl 6-((2-formyl-3-hydroxyphenoxy)methyl) picolinate (PP10) is another promising aromatic aldehyde, recently reported by our group. Like voxelotor, PP10 exhibits O2-dependent antisickling activity, but, unlike voxelotor, PP10 shows unique O2-independent antisickling effect. PP10, however, has limited solubility. This study therefore aimed to develop oral and parenteral formulations to improve PP10 solubility and bioavailability. METHODS: Oral drug tablets with 2-hydroxypropyl beta cyclodextrin (HP-ß-CD), polyvinylpyrrolidone, or Eudragit L100-55 PP10-binary system, and an intravenous (IV) formulation with d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or HP-ß-CD, were developed. The pharmacokinetic behavior of the formulations was studied in Sprague-Dawley rats. PP10, a methylester, and its acid metabolite were also studied in vitro with sickle whole blood to determine their effect on Hb modification, Hb oxygen affinity, and sickle red blood cell inhibition. RESULTS: Aqueous solubility of PP10 was enhanced ~5 times with the HP-ß-CD binary system, while the TPGS aqueous micelle formulation was superior, with a drug concentration of 0.502 ± 0.01 mg/mL and a particle size of 26 ± 3 nm. The oral tablets showed relative and absolute bioavailabilities of 173.4% and 106.34%, respectively. The acid form of PP10 appeared to dominate in vivo, although both PP10 forms demonstrated pharmacologic effect. CONCLUSION: Oral and IV formulations of PP10 were successfully developed using HP-ß-CD binary system and TPGS aqueous micelles, respectively, resulting in significantly improved solubility and bioavailability.

17.
Front Pharmacol ; 12: 794325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069208

RESUMO

Structural changes of small-molecule drugs may bring interesting biological properties, especially in the field of kinase inhibitors. We sought to study tirbanibulin, a first-in-class dual Src kinase (non-ATP competitive)/tubulin inhibitor because there was not enough reporting about its structure-activity relationships (SARs). In particular, the present research is based on the replacement of the outer ring of the biphenyl system of 2-[(1,1'-biphenyl)-4-yl]-N-benzylacetamide, the identified pharmacophore of KX chemotype, with a heterocyclic ring. The newly synthesized compounds showed a range of activities in cell-based anticancer assays, agreeing with a clear SAR profile. The most potent compound, (Z)-N-benzyl-4-[4-(4-methoxybenzylidene)-2-methyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]phenylacetamide (KIM-161), demonstrated cytotoxic IC50 values at 294 and 362 nM against HCT116 colon cancer and HL60 leukemia cell lines, respectively. Profiling of this compound (aqueous solubility, liver microsomal stability, cytochrome P450 inhibition, reactivity with reduced glutathione, and plasma protein binding) confirmed its adequate drug-like properties. Mechanistic studies revealed that this compound does not depend on tubulin or Src kinase inhibition as a factor in forcing HL60 to exit its cell cycle and undergo apoptosis. Instead, KIM-161 downregulated several other kinases such as members of BRK, FLT, and JAK families. It also strongly suppresses signals of ERK1/2, GSK-3α/ß, HSP27, and STAT2, while it downregulated AMPKα1 phosphorylation within the HL60 cells. Collectively, these results suggest that phenylacetamide-1H-imidazol-5-one (KIM-161) could be a promising lead compound for further clinical anticancer drug development.

18.
Biomolecules ; 10(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147875

RESUMO

Aromatic aldehydes that bind to sickle hemoglobin (HbS) to increase the protein oxygen affinity and/or directly inhibit HbS polymer formation to prevent the pathological hypoxia-induced HbS polymerization and the subsequent erythrocyte sickling have for several years been studied for the treatment of sickle cell disease (SCD). With the exception of Voxelotor, which was recently approved by the U.S. Food and Drug Administration (FDA) to treat the disease, several other promising antisickling aromatic aldehydes have not fared well in the clinic because of metabolic instability of the aldehyde moiety, which is critical for the pharmacologic activity of these compounds. Over the years, our group has rationally developed analogs of aromatic aldehydes that incorporate a stable Michael addition reactive center that we hypothesized would form covalent interactions with Hb to increase the protein affinity for oxygen and prevent erythrocyte sickling. Although, these compounds have proven to be metabolically stable, unfortunately they showed weak to no antisickling activity. In this study, through additional targeted modifications of our lead Michael addition compounds, we have discovered other novel antisickling agents. These compounds, designated MMA, bind to the α-globin and/or ß-globin to increase Hb affinity for oxygen and concomitantly inhibit erythrocyte sickling with significantly enhanced and sustained pharmacologic activities in vitro.


Assuntos
Anemia Falciforme/tratamento farmacológico , Hemoglobinas/genética , Relação Estrutura-Atividade , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Antidrepanocíticos/farmacologia , Benzaldeídos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/ultraestrutura , Hemoglobina Falciforme/efeitos dos fármacos , Hemoglobina Falciforme/genética , Hemoglobinas/ultraestrutura , Humanos , Pirazinas/farmacologia , Pirazóis/farmacologia
19.
Biomolecules ; 10(3)2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245218

RESUMO

The nonstructural (NS) protein NS3/4A protease is a critical factor for hepatitis C virus (HCV) maturation that requires activation by NS4A. Synthetic peptide mutants of NS4A were found to inhibit NS3 function. The bridging from peptide inhibitors to heterocyclic peptidomimetics of NS4A has not been considered in the literature and, therefore, we decided to explore this strategy for developing a new class of NS3 inhibitors. In this report, a structure-based design approach was used to convert the bound form of NS4A into 1H-imidazole-2,5-dicarboxamide derivatives as first generation peptidomimetics. This scaffold mimics the buried amino acid sequence Ile-25` to Arg-28` at the core of NS4A21`-33` needed to activate the NS3 protease. Some of the synthesized compounds (Coded MOC) were able to compete with and displace NS4A21`-33` for binding to NS3. For instance, N5-(4-guanidinobutyl)-N2-(n-hexyl)-1H-imidazole-2,5-dicarboxamide (MOC-24) inhibited the binding of NS4A21`-33` with a competition half maximal inhibitory concentration (IC50) of 1.9 ± 0.12 µM in a fluorescence anisotropy assay and stabilized the denaturation of NS3 by increasing the aggregation temperature (40% compared to NS4A21`-33`). MOC-24 also inhibited NS3 protease activity in a fluorometric assay. Molecular dynamics simulations were conducted to rationalize the differences in structure-activity relationship (SAR) between the active MOC-24 and the inactive MOC-26. Our data show that MOC compounds are possibly the first examples of NS4A peptidomimetics that have demonstrated promising activities against NS3 proteins.


Assuntos
Hepatite C/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptidomiméticos/química , Inibidores de Serina Proteinase/química , Proteínas não Estruturais Virais/química , Peptidomiméticos/síntese química , Inibidores de Serina Proteinase/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores
20.
J Adv Res ; 24: 251-259, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373358

RESUMO

NS4A is a non-structural multi-tasking small peptide that is essential for HCV maturation and replication. The central odd-numbered hydrophobic residues of NS4A (Val-23' to Leu-31') are essential for activating NS3 upon NS3/4A protease complex formation. This study aims to design new specific allosteric NS3/4A protease inhibitors by mutating Val-23', Ile-25', and Ile-29' into bulkier amino acids. Pep-15, a synthetic peptide, showed higher binding affinity towards HCV-NS3 subtype-4 than native NS4A. The K d of Pep-15 (80.0 ± 8.0 nM) was twice as high as that of native NS4A (169 ± 37 nM). The mutant Pep-15 inhibited the catalytic activity of HCV-NS3 by forming an inactive complex. Molecular dynamics simulations suggested that a cascade of conformational changes occurred, especially in the catalytic triad arrangements, thereby inactivating NS3. A large shift in the position of Ser-139 was observed, leading to loss of critical hydrogen bonding with His-57. Even though this study is not a classic drug discovery study-nor do we propose Pep-15 as a drug candidate-it serves as a stepping stone towards developing a potent inhibitor of hitherto untargeted HCV subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA