RESUMO
As antibiotics cannot inhibit multidrug-resistant bacteria (MDR), continuous research is mandatory to find other antibacterials from natural resources. Native legume proteins and their modified forms exhibited broad spectra of high antimicrobial activities. Sixteen bacterial isolates were mapped for antibiotic resistance, showing resistance in the range of (58-92%) and (42-92%) in the case of the Gram-negative and Gram-positive bacteria, respectively. White native Phaseolus vulgaris protein (NPP) was isolated from the seeds and methylated (MPP). The MIC range of MPP against 7 MDR bacteria was 10-25 times lower than NPP and could (1 MIC) considerably inhibit their 24 h liquid growth. MPP showed higher antibacterial effectiveness than Gentamycin, the most effective antibiotic against Gram-positive bacteria and the second most effective against Gram-negative bacteria. However, MPP recorded MICs against the seven studied MDR bacteria in the 1-20 µg/mL range, the same for Gentamycin. The combination of Gentamycin and MPP produced synergistic effects against the seven bacteria studied, as confirmed by the Transmission Electron Microscopic images. The antimicrobial activity of MPP against the seven MDR bacteria remained stable after two years of cold storage at 8-10 °C as contrasted to Gentamycin, which lost 20-72% of its antimicrobial effectiveness.
Assuntos
Infecções Bacterianas , Phaseolus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Bactérias , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Gentamicinas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: The spreading of root rot disease of faba bean plant (Vichia faba L, VF) in Egypt is still of great challenge faced researchers since VF is an important legume in Egypt, because their seeds are used for human feeding. Fungicides are used for treatment of either seeds or soil; unfortunately they cause environmental pollution. Therefore, there is a need to continue research to find out safe natural solutions. In this regard, Arbuscular mycorrhizal fungi (AMF) and chitosan (micro or nanoform) were used as an inhibitory product against Rhizoctonia solani OM918223 (R.solani) either singly or in combinations. RESULTS: The results employed herein have exhibited that R.solani caused root rot disease of VF plants in more than 80% of the plants under investigation. Chitosan nanoparticles (Chitosan NPs) were prepared by ionic gelatin method and characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) imaging and Fourier transform infra-red (FTIR). Chitosan NPs are spherical with a diameter of 78.5 nm and exhibited the presence of different functional groups. The inhibitory natural products against R.solani were arranged according to their ability to inhibit the pathogen used in the following descending manner; combination of AMF with Chitosan NPs, AMF with micro chitosan and single AMF, respectively. Where, Chitosan NPs showed a potent influence on R.solani pathogen and reduced the pre-and post-emergence of R. solani. In addition, Chitosan NPs reduced Disease Incidence (DI %) and Disease Severity (DS %) of root rot disease and are widely functional through mixing with AMF by about 88% and 89%. Further, Chitosan NPs and micro chitosan were proved to increase the growth parameters of VF plants such as nutritional status (mineral, soluble sugar, and pigment content), and defense mechanisms including total phenol, peroxidase, and polyphenol oxidase in mycorrhizal plants more than non-mycorrhizal one either in infected or healthy plants. Moreover, activity of AMF as an inhibitory against R.solani and improvement natural agent for VF growth parameters was enhanced through its fusing with Chitosan NPs. CONCLUSIONS: The use of AMF and Chitosan NPs increased faba bean plant resistance against the infection of root rot R. solani, with both prevention and cure together. Therefore, this research opens the door to choose natural and environmental friendly treatments with different mechanisms of plant resistance to disease.
Assuntos
Quitosana , Micorrizas , Vicia faba , Humanos , RhizoctoniaRESUMO
The current study investigates the capacity of a lipolytic Lactobacillus paracasei postbiotic as a possible regulator for lipid metabolism by targeting metabolic syndrome as a possibly safer anti-obesity and Anti-dyslipidemia agent replacing atorvastatin (ATOR) and other drugs with proven or suspected health hazards. The high DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2'-azino-bis (3-ethyl benzothiazoline-6-sulphonic acid)] scavenging activity and high activities of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) of the Lactobacillus paracasei postbiotic (cell-free extract), coupled with considerable lipolytic activity, may support its action against metabolic syndrome. Lactobacillus paracasei isolate was obtained from an Egyptian cheese sample, identified and used for preparing the postbiotic. The postbiotic was characterized and administered to high-fat diet (HFD) albino rats (100 and 200 mg kg-1) for nine weeks, as compared to atorvastatin (ATOR; 10 mg kg-1). The postbiotic could correct the disruption in lipid metabolism and antioxidant enzymes in HFD rats more effectively than ATOR. The two levels of the postbiotic (100 and 200 mg kg-1) reduced total serum lipids by 29% and 34% and serum triglyceride by 32-45% of the positive control level, compared to only 25% and 35% in ATOR's case, respectively. Both ATOR and the postbiotic (200 mg kg-1) equally decreased total serum cholesterol by about 40% and 39%, while equally raising HDL levels by 28% and 30% of the positive control. The postbiotic counteracted HFD-induced body weight increases more effectively than ATOR without affecting liver and kidney functions or liver histopathology, at the optimal dose of each. The postbiotic is a safer substitute for ATOR in treating metabolic syndrome.
Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/administração & dosagem , Lacticaseibacillus paracasei/metabolismo , Lipólise , Síndrome Metabólica/tratamento farmacológico , Probióticos/administração & dosagem , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismoRESUMO
Penicillium chrysogenum has been reported as a potent taxol producer based on quantitative analysis by TLC and HPLC. The biosynthetic potency of taxol has been validated from PCR detection of rate-limiting genes of taxol synthesis such as taxadienesynthase and 10-de-acetylbaccatin III-O-acetyltransferase (DBAT), which catalyzes the immediate diterpenoid precursor of the taxol substance, as detected by PCR. Taxol production by P. chrysogenum was assessed by growing the fungus on different media. Potato dextrose broth (PDB) was shown to be the best medium for obtaining the higher amount of taxol (170 µg/L). A stepwise optimization of culture conditions necessary for production of higher amounts of taxol was investigated. The substance taxol was produced optimally after 18 d of incubation at 30 °C in PDB adjusted initially at pH 8.0 with shaking (120 rpm) (250 µg/L). The P. chrysogenum taxol was purified successfully by HPLC. Instrumental analyzes such as Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy, 1HNMR and 13C NMR approved the structural formula of taxol (C47H51NO14), as constructed by ChemDraw. The P. chrysogenum taxol showed promising anticancer activity.
Assuntos
Proliferação de Células/efeitos dos fármacos , Paclitaxel/química , Penicillium chrysogenum/química , Cromatografia Líquida de Alta Pressão , Humanos , Isomerases/biossíntese , Isomerases/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Paclitaxel/biossíntese , Paclitaxel/isolamento & purificação , Paclitaxel/farmacologia , Penicillium chrysogenum/enzimologia , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Bacterial outbreaks caused by Staphylococcus aureus (S. aureus) are interesting due to the existence of multidrug resistant (MDR) isolates. Therefore, there is a need to develop novel ways to control such MDR S. aureus. In this study, some natural agents such as honey bee (HB), extracts of either Moringa oleifera seeds (MSE), or leaves (MLE) and essential oils of garlic, clove, and moringa were studied for their inhibitory activity against this S. aureus pathogen. About 100 food samples including beef luncheon (n = 25), potato chips (n = 50), and corn flakes (n = 25) were investigated for possible pollution with the S. aureus bacteria. The isolated bacteria suspected to belong S. aureus that grew well onto Baird-Parker agar (Oxoid) and shiny halo zones and positive coagulase reaction were selected and identified by API-Kits; all of them that were approved belong to S. aureus (18 strains). The sensitivity of the obtained 18 S. aureus bacterial strains to 12 antibiotics were evaluated; all of them were resistant to ofloxacin; however, other antibiotics tested showed variable results. Interestingly, the S. aureus No. B3 isolated from beef luncheon was resistant to10 antibiotics out of 12 ones tested. Multiple antibiotic resistance index (MAR) of this S. aureus strain was about 83.3%. Therefore, its identification was confirmed by sequencing of a 16S rRNA gene which approved a successful biochemical identification carried out by API Kits and such strain was designated S. aureus LC 554891. The genome of such strain appeared to contain mecA gene encoding methicillin resistance; it was found to contain hla, hlb, tsst-1, and finbA that encode α-blood hemolysis, ß-blood hemolysis, toxic shock syndrome gene, and fibrinogen-binding protein gene, respectively. In addition, the virulence factors viz. sea; seb; sec encoding enterotoxins were detected in the DNA extracted from S. aureus B3 strain. Aqueous extract of Moringa oleifera seeds (MSE) showed inhibitory activity against S. aureus LC 554891 better than that obtained by tetracycline, essential oils or HB. Minimum inhibitory concentration (MIC) of MSE was 20µg/mL. Instrumental analysis of MSE showed 14 bioactive chemical compounds. Combinations of both MSE and tetracycline showed distinctive inhibitory activity against S. aureus LC 554891 than that obtained by either tetracycline or MSE singly.
Assuntos
Antibacterianos/farmacologia , Moringa oleifera/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fatores de VirulênciaRESUMO
Introduction: Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods: A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results: Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion: This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Assuntos
Antifúngicos , Biofilmes , Candida albicans , Ciclídeos , Ligilactobacillus salivarius , Testes de Sensibilidade Microbiana , Nanocompostos , Probióticos , Zinco , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Nanocompostos/química , Antifúngicos/farmacologia , Zinco/farmacologia , Probióticos/farmacologia , Humanos , Ligilactobacillus salivarius/efeitos dos fármacos , Ligilactobacillus salivarius/fisiologia , Egito , Nanopartículas/química , Microbiologia da ÁguaRESUMO
Introduction: Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods: In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results: S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion: The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Assuntos
Aeromonas , Staphylococcus aureus Resistente à Meticilina , Smegmamorpha , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Aeromonas hydrophila/genética , Estudos Transversais , Antibacterianos/farmacologia , Peixes , Amoxicilina , Fatores de Risco , Água , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologiaRESUMO
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that poses significant risks to public health and food safety. The present study aimed to identify the presence of Listeria spp. in various samples, including pasteurized milk, chicken fillets, and stool samples from pregnant women in Sharkia Governorate, Egypt. Additionally, the study identified the serotypes, virulence-associated genes, antimicrobial resistance patterns, and biofilm formation in L. monocytogenes isolates. Moreover, the antibacterial and anti-biofilm activity of Lactobacillus plantarum ATCC 14917 (L. plantarum) against L. monocytogenes isolates was investigated. A cross-sectional study was conducted from August 2021 to January 2022 to collect 300 samples of pasteurized milk, chicken fillets, and stool from pregnant women admitted to outpatient clinics of hospitals. The results showed that 32.7% of the samples were positive for Listeria spp., including L. innocua (48.9%), L. monocytogenes (26.5%), L. ivanovii (14.3%), L. grayi (5.1%), and L. welshimeri (5.1%). Among all L. monocytogenes isolates, hlyA, actA, inlC, and inlJ virulence-associated genes were detected. However, the virulence genes plcB, iap, and inlA were found in 10 (38.5%), 8 (30.8%), and 25 (96.2%) isolates, respectively. The L. monocytogenes isolates classified into four serotypes (1/2a, 1/2b, 1/2c, and 4b), with 1/2a and 4b each identified in 30.8% of the isolates, while 1/2b and 1/2c were identified in 19.2% of the isolates. All L. monocytogenes isolates showed 100% resistance to streptomycin, kanamycin, and nalidix acid, and 92.3% of isolates showed gentamicin resistance. However, all isolates were susceptible to ampicillin and ampicillin/sulbactam. Multidrug resistance (MDR) was observed in 20 (76.9%) L. monocytogenes isolates. The biofilm formation ability of 26 L. monocytogenes isolates was evaluated at different incubation temperatures. At 4°C, 25°C, and 37°C, 53.8, 69.2, and 80.8% of the isolates, respectively, were biofilm producers. Furthermore, 23.1% were strong biofilm producers at both 4°C and 25°C, while 34.6% were strong biofilm formers at 37°C. Treating L. monocytogenes isolates with L. plantarum cell-free supernatant (CFS) reduced the number of biofilm-producing isolates to 15.4, 42.3, and 53.8% at 4°C, 25°C, and 37°C, respectively. L. plantarum's CFS antibacterial activity was tested against six virulent, MDR, and biofilm-forming L. monocytogenes isolates. At a concentration of 5 µg/mL of L. plantarum CFS, none of the L. monocytogenes isolates exhibited an inhibition zone. However, an inhibition zone was observed against L. monocytogenes strains isolated from pasteurized milk and pregnant women's stools when using a concentration of 10 µg/mL. Transmission electron microscopy (TEM) revealed that L. plantarum CFS induced morphological and intracellular structural changes in L. monocytogenes. In conclusion, this study identified virulent MDR L. monocytogenes isolates with strong biofilm-forming abilities in food products in Egypt, posing significant risks to food safety. Monitoring the prevalence and antimicrobial resistance profile of L. monocytogenes in dairy and meat products is crucial to enhance their safety. Although L. plantarum CFS showed potential antibacterial and anti-biofilm effects against L. monocytogenes isolates, further research is needed to explore its full probiotic potential.
RESUMO
[This corrects the article DOI: 10.1016/j.sjbs.2021.05.027.].
RESUMO
Cowpea seed protein hydrolysates (CPH) were output from cowpea seeds applying alcalase® from Bacillus licheniformis. CPH with an elevated level of hydrolysis was fractionated by size exclusion chromatography (SEC). Both CPH and SEC-portions showed to contain antimicrobial peptides (AMPs) as they inhibited both Gram-positive bacteria, such as Listeria monocytogenes LMG10470 (L. monocytogenes), Listeria innocua. LMG11387 (L. innocua), Staphylococcus aureus ATCC25923 (S.aureus), and Streptococcus pyogenes ATCC19615 (St.pyogenes), and Gram-negative bacteria, such as Klebsiella pnemoniae ATCC43816 (K. pnemoniae), Pseudomonas aeroginosa ATCC26853 (P. aeroginosa), Escherichia coli ATCC25468) (E.coli) and Salmonella typhimurium ATCC14028 (S. typhimurium).The data exhibited that both CPH and size exclusion chromatography-fraction 1 (SEC-F1) showed high antibacterial efficiency versus almost all the assessed bacteria. The MIC of the AMPs within SEC-F1 and CPHs were (25 µg/mL) against P. aeruginosa, E.coli and St. pyogenes. However, higher MICsof approximately 100-150 µg/mL showed for both CPHs and SEC-F1 against both S. aureus and L. innocua; it was 50 µg/mL of CPH against S.aureus. The Electro-spray-ionization-mass-spectrometry (ESI-MS) of fraction (1) revealed 10 dipeptides with a molecular masses arranged from 184 Da to 364 Da and one Penta peptide with a molecular mass of approximately 659 Da inthe case of positive ions. While the negative ions showed 4 dipeptides with the molecular masses that arranged from 330 Da to 373 Da. Transmission electron microscope (TEM) demonstrated that the SEC-F1 induced changes in the bacterial cells affected. Thus, the results suggested that the hydrolysis of cowpea seed proteins by Alcalase is an uncomplicated appliance to intensify its antibacterial efficiency.
RESUMO
The use of nanomaterials alone or in composites with proteins is a promising alternative to inhibit pathogenic bacteria. In this regard, this study used seed proteins from both fenugreek (Trigonella foenum-graecum L.) (FNP) and mung bean (Viga radiate) (MNP), with silver nanoparticles (Ag-NPs) and nanocomposites of either Ag-NPs plus FNP (Ag-FNP) or Ag-NPs plus MNP (Ag-MNP) as inhibitory agents against pathogenic bacteria. FNP and MNP were isolated from fenugreek seeds and mung bean seeds, respectively, and fractionated using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Both FNP and MNP were immobilized with Ag-NPs to synthesize the nanocomposites Ag-FNP and Ag-MNP, respectively. The physicochemical characteristics of Ag-NPs and their composites with proteins were studied by X-ray Diffraction (XRD), dynamic light scattering (DLS), the zeta potential, Scanning and Transmission Electron Microscopy (SEM and TEM, respectively), Atomic Force Microscopy (AFM), and the Brunauer-Emmett-Teller isotherm (BET), elucidating their structural parameters, size distribution, size charges, size surface morphology, particle shape, dimensional forms of particles, and specific surface area, respectively. The sole proteins, Ag-NPs, and their nanocomposites inhibited pathogenic Gram-positive and Gram-negative bacteria. The inhibitory activities of both nanocomposites (Ag-FNP and Ag-MNP) were more than those obtained by either Ag-NPs or proteins (FNP, MNP). Minimum inhibitory concentrations (MICs) of Ag-FNP were very low (20 and 10 µg mL-1) against Salmonellatyphimurium and Pseudomonasaerugenosa, respectively, but higher (162 µg mL-1) against E. coli and Listeriamonocytogenes. MICs of Ag-MNP were also very low (20 µg mL-1) against Staphylococcusaureus but higher (325 µg mL-1) against Listeriamonocytogenes. TEM images of Staphylococcusaureus and Salmonellatyphimurium, treated with Ag-FNP and Ag-MNP, at their MIC values, showed asymmetric, wrinkled exterior surfaces, cell deformations, cell depressions, and diminished cell numbers.
RESUMO
Rice husks (RHs) was used as a substrate for biosynthesis of high-value Silica nanoparticles (SiO2NPs). An isolate of Trichoderma harzianum MF780864 (T. harzianum) was isolated and identified based on the Internal Transcribed Spacers (ITS) sequences; it showed the potentiality to induce SiO2NPs in the process of RHs biotransformation. SiO2NPs were produced extracellularly and their size was of about 89 nm. SiO2NPs characterized by oval, rod and cubical particles by using Transmission Electron Microscope (TEM).The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of various functional groups of biomolecules and capping protein, encapsulating SiO2NPs. Water and fish samples were collected from private fish farms in El-Sharkia Governorate, Egypt. Lead (Pb) was detected from water and fish samples at its highest concentration at about 0.088 mg/L. The adsorption capacity of Pb by SiO2NPs was evaluated by testing different concentrations of SiO2NPs viz. 1, 2, and 3 mg/L, wherein 1 mg/L revealed the highest Pb adsorption efficiency. Within laboratory trials, the results indicated that highest Pb adsorption efficiency revealed through the increasing of SiO2NPs concentrations until 120 h. In vivo trial that lasted for 8 weeks, Nile tilapia (Oreochromis niloticus) (29.78 ± 0.36 g body weight) supplemented with 0.088 mg/L Pb was divided into four experimental groups having three replicates (15 fish/replicate; 45 fish/group). The results showed that SiO2NPs supplementation through water revealed significant increase in growth and hematological parameters of O. niloticus. Moreover, enhancement of antioxidant capacity (TAC), and immune related gene expression of IL-1ß were increased in the presence of SiO2NPs compared with the groups of Pb exposure. Moreover, Pb residue level in fish muscles was noticeably decreased in the SiO2NPs treated groups. Thus, this research opens up other possibilities in the field of using SiO2NPs as a lead adsorbent for water bioremediation.
RESUMO
This study aimed to investigate the ameliorative effects of iron oxide nanoparticles (IONPs) prepared from leaf extract of Petroselinum crispum compared to those prepared using a chemical method in lead-acetate-induced anemic rats. Twenty rats were divided into four groups (five rats each). Throughout the experimental period (8 weeks), the rats in group 1 were not given any therapy. The rats in groups 2, 3 and 4 were given 400 ppm lead acetate orally for 2 weeks to make them anemic. Following that, these rats were either left untreated, given 27 ppm of chemical IONPs orally or given 27 ppm of natural IONPs orally for the remaining 6 weeks of the experiment. TEM analysis indicated that the chemically and naturally prepared IONPs had sizes of 6.22-9.7 and 64-68 nm, respectively. Serum ferritin and iron concentrations were reduced, whereas the total iron-binding capacity (TIBC), ALT, AST, urea and creatinine were significantly increased in the non-treated lead-acetate-induced anemic rats compared to those of the control. In addition, congestion, hemorrhage, necrosis, vacuolation and leukocytic infiltration in the kidneys, liver and spleen were observed in non-treated lead-acetate-induced anemic rats compared to the control. The effects of lead acetate were mitigated by IONPs, particularly the natural one. In conclusion, IONPs produced from Petroselinum crispum leaf extract can be used as an efficient and safe therapy in lead-acetate-induced anemic rats.
RESUMO
Salmonella enterica is one of the most common causes of foodborne illness worldwide. Contaminated poultry products, especially meat and eggs are the main sources of human salmonellosis. Thus, the aim of the present study was to determine prevalence, antimicrobial resistance profiles, virulence, and resistance genes of Salmonella Enteritidis (S. enteritidis) and Salmonella Typhimurium (S. Typhimurium) isolated from laying hens, table eggs, and humans, in Sharkia Governorate, Egypt. The antimicrobial activity of Biosynthesized Silver Nanoparticles (AgNPs) was also evaluated. Salmonella spp. were found in 19.3% of tested samples with laying hens having the highest isolation rate (33.1%). S. Enteritidis) (5.8%), and S. Typhimurium (2.8%) were the dominant serotypes. All isolates were ampicillin resistant (100%); however, none of the isolates were meropenem resistant. Multidrug-resistant (MDR) was detected in 83.8% of the isolates with a multiple antibiotic resistance index of 0.21 to 0.57. Most isolates (81.1%) had at least three virulence genes (sopB, stn, and hilA) and none of the isolates harbored the pefA gene; four resistance genes (blaTEM, tetA, nfsA, and nfsB) were detected in 56.8% of the examined isolates. The AgNPs biosynthesized by Aspergillus niveus exhibit an absorption peak at 420 nm with an average size of 27 nm. AgNPs had a minimum inhibitory concentration of 5 µg/mL against S. enteritidis and S. typhimurium isolates and a minimum bactericidal concentration of 6 and 8 µg/mL against S. enteritidis and S. typhimurium isolates, respectively. The bacterial growth and gene expression of S. enteritidis and S. typhimurium isolates treated with AgNPs were gradually decreased as storage time was increased. In conclusion, this study indicates that S. enteritidis and S. typhimurium isolated from laying hens, table eggs, and humans exhibits resistance to multiple antimicrobial classes. The biosynthesized AgNPs showed potential antimicrobial activity against MDR S. enteritidis and S. typhimurium isolates. However, studies to assess the antimicrobial effectiveness of the biosynthesized AgNPs in laying hen farms are warranted.
RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0235355.].
RESUMO
The Arbuscular mycorrhizal fungi (AMF) (Funneliformis mosseae), are the most widely distributed symbiont assisting plants to overcome counteractive environmental conditions. In order to improve the sustainability and the activity of AMF, the use of nanotechnology was important. The main objective of this study was to investigate the effect of titanium dioxide nanoparticles (TiO2NPs) on the activity of AMF in common bean roots as well as its activity under salinity stress using morphological and molecular methods. The activity of AMF colonization has increased in the presence of TiO2NPs especially for arbuscule activity (A%), which increased three times with the presence of TiO2NPs. The improvement rate of Funneliformis mosseae on plant growth increased from 180% to 224% of control at the lowest level of salinity and increased from 48% to 130% at higher salinity level, respectively. The AMF dependencies for plant dry biomass increased in the presence of TiO2NPs from 277% in the absence of salinity to 465 and 883% % at low and high salinity levels, respectively. The presence of AMF co-inoculated with TiO2NPs resulted in increasing the salinity tolerance of plants at all levels and reached 110% at salinity level of 100 mM NaCl. Quantitative colonization methods showed that the molecular intensity ratio and the relative density of paired inocula AMF Nest (NS) or chitin synthases gene (Chs) with TiO2NPs were higher significantly P.>0.05 than single inoculants of AMF gene in roots under the presence or the absence of salinity by about two folds and about 40%. Hence, the positive effect of TiO2NPs was confined to its effect on AMF not on bean plants itself.
Assuntos
Ascomicetos/patogenicidade , Nanopartículas Metálicas/química , Phaseolus/microbiologia , Tolerância ao Sal , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nanopartículas Metálicas/microbiologia , Phaseolus/metabolismo , Simbiose , Titânio/química , Titânio/farmacologiaRESUMO
There is a need to continue research to find out other anti-dermatophytic agents to inhibit causal pathogenic skin diseases including many types of tinea. We undertook the production, purification, and identification of an anti-dermatophytic substance by Streptomyces atrovirens. Out of 103 streptomycete isolates tested, only 20 of them showed antidermatophytic activity with variable degrees against Trichophyton tonsurans CCASU 56400 (T. tonsurans), Microsporum canis CCASU 56402 (M. canis), and Trichophyton mentagrophytes CCASU 56404 (T. mentagrophytes). The most potent isolate, S10Q6, was identified based on the tests conducted that identified morphological and physiological characteristics and using 16S rRNA gene sequencing. The isolate was found to be closely correlated to previously described species Streptomyces atrovirens; it was designated Streptomyces atrovirens KM192347 (S. atrovirens). Maximum antifungal activity of the strain KM192347 was obtained in modified starch nitrate medium (MSNM) adjusted initially at pH 7.0 and incubated at 30 °C in shaken cultures (150 rpm) for seven days. The antifungal compound was purified by using two steps protocol including solvent extraction and column chromatography. The MIC of it was 20µg/mL against the dermatophyte cultures tested. According to the data obtained from instrumental analysis and surveying the novel antibiotics database, the antidermatophytic substance produced by the strain KM192347 was characterized as an oxaborole-6-benzene sulphonamide derivative and designated oxaborole-6-benzene sulphonamide (OXBS) with the chemical formula C13H12 BNO4S. The crude OXBS didn't show any toxicity on living cells. Finally, the results obtained herein described another anti-dermatophytic substance named an OXBS derivative. .