Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Allergy Clin Immunol ; 143(4): 1575-1585.e4, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30554723

RESUMO

BACKGROUND: Commensals induce local IgA responses essential to the induction of tolerance to gut microbiota, but it remains unclear whether antimicrobiota responses remain confined to the gut. OBJECTIVE: The aim of this study was to investigate systemic and intestinal responses against the whole microbiota under homeostatic conditions and in the absence of IgA. METHODS: We analyzed blood and feces from healthy donors, patients with selective IgA deficiency (SIgAd), and patients with common variable immunodeficiency (CVID). Immunoglobulin-coated bacterial repertoires were analyzed by using combined bacterial fluorescence-activated cell sorting and 16S rRNA sequencing. Bacterial lysates were probed by using Western blot analysis with healthy donor sera. RESULTS: Although absent from the healthy gut, serum antimicrobiota IgG are present in healthy subjects and increased in patients with SIgAd. IgG converges with nonoverlapping secretory IgA specificities to target the same bacteria. Each individual subject targets a diverse microbiota repertoire with a proportion that correlates inversely with systemic inflammation. Finally, intravenous immunoglobulin preparations target CVID gut microbiota much less efficiently than healthy microbiota. CONCLUSION: Secretory IgA and systemic IgG converge to target gut microbiota at the cellular level. SIgAd-associated inflammation is inversely correlated with systemic anticommensal IgG responses, which might serve as a second line of defense. We speculate that patients with SIgAd could benefit from oral IgA supplementation. Our data also suggest that intravenous immunoglobulin preparations can be supplemented with IgG from IgA-deficient patient pools to offer better protection against gut bacterial translocations in patients with CVID.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antibacterianos/imunologia , Imunodeficiência de Variável Comum/imunologia , Fezes/química , Humanos , Deficiência de IgA/imunologia
2.
BMC Genomics ; 15: 407, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24884896

RESUMO

BACKGROUND: Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. RESULTS: Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. CONCLUSIONS: The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.


Assuntos
Evolução Molecular , Genes Bacterianos , Lactobacillus delbrueckii/genética , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos , Fermentação , Transferência Genética Horizontal , Genoma Bacteriano , Tipagem de Sequências Multilocus , Proteoma/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
PLoS Pathog ; 7(12): e1002403, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144896

RESUMO

Meningococcal invasive isolates of the ST-11 clonal complex are most frequently associated with disease and rarely found in carriers. Unlike carriage isolates, invasive isolates induce apoptosis in epithelial cells through the TNF-α signaling pathway. While invasive and non-invasive isolates are both able to trigger the TLR4/MyD88 pathway in lipooligosaccharide (LOS)-dependant manner, we show that only non-invasive isolates were able to induce sustained NF-κB activity in infected epithelial cells. ST-11 invasive isolates initially triggered a strong NF-κB activity in infected epithelial cells that was abolished after 9 h of infection and was associated with sustained activation of JNK, increased levels of membrane TNFR1, and induction of apoptosis. In contrast, infection with carriage isolates lead to prolonged activation of NF-κB that was associated with a transient activation of JNK increased TACE/ADAM17-mediated shedding of TNFR1 and protection against apoptosis. Our data provide insights to understand the meningococcal duality between invasiveness and asymptomatic carriage.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Infecções Meningocócicas/metabolismo , NF-kappa B/metabolismo , Neisseria meningitidis/metabolismo , Transdução de Sinais , Proteínas ADAM/metabolismo , Proteína ADAM17 , Células Epiteliais/patologia , Humanos , Lipopolissacarídeos/metabolismo , MAP Quinase Quinase 4/metabolismo , Infecções Meningocócicas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31891367

RESUMO

In humans, several grams of IgA are secreted every day in the intestinal lumen. While only one IgA isotype exists in mice, humans secrete IgA1 and IgA2, whose respective relations with the microbiota remain elusive. We compared the binding patterns of both polyclonal IgA subclasses to commensals and glycan arrays and determined the reactivity profile of native human monoclonal IgA antibodies. While most commensals are dually targeted by IgA1 and IgA2 in the small intestine, IgA1+IgA2+ and IgA1-IgA2+ bacteria coexist in the colon lumen, where Bacteroidetes is preferentially targeted by IgA2. We also observed that galactose-α terminated glycans are almost exclusively recognized by IgA2. Although bearing signs of affinity maturation, gut-derived IgA monoclonal antibodies are cross-reactive in the sense that they bind to multiple bacterial targets. Private anticarbohydrate-binding patterns, observed at clonal level as well, could explain these apparently opposing features of IgA, being at the same time cross-reactive and selective in its interactions with the microbiota.

5.
Sci Transl Med ; 10(439)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720448

RESUMO

Paradoxically, loss of immunoglobulin A (IgA), one of the most abundant antibodies, does not irrevocably lead to severe infections in humans but rather is associated with relatively mild respiratory infections, atopy, and autoimmunity. IgA might therefore also play covert roles, not uniquely associated with control of pathogens. We show that human IgA deficiency is not associated with massive quantitative perturbations of gut microbial ecology. Metagenomic analysis highlights an expected pathobiont expansion but a less expected depletion in some typically beneficial symbionts. Gut colonization by species usually present in the oropharynx is also reminiscent of spatial microbiota disorganization. IgM only partially rescues IgA deficiency because not all typical IgA targets are efficiently bound by IgM in the intestinal lumen. Together, IgA appears to play a nonredundant role at the forefront of the immune/microbial interface, away from the intestinal barrier, ranging from pathobiont control and regulation of systemic inflammation to preservation of commensal diversity and community networks.


Assuntos
Deficiência de IgA/imunologia , Deficiência de IgA/microbiologia , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Microbiota/fisiologia
6.
Biol Aujourdhui ; 211(1): 39-49, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28682226

RESUMO

Genetic evolution of multicellular organisms occurred as a response to environmental challenges, in particular competition for nutrients, climatic change, physical and chemical stressors and pathogens. However organism fitness depends on both the efficiency of its defences and its capacities for benefiting from its symbiotic organisms. Indeed microbes not only engender pathogenies, but enable efficient uptake of host non-self biodegradable nutriments. Furthermore, microbes play an important role in the development of host immunity. We shall review here the associations between some specific genes of the host, microbiota and the immune system. Recent genome-wide association studies disclose that symbiosis between host and microbiota results from a stringent genetic co-evolution. On the other hand, a microbe subset isolated from murine and human microbiotes has been identified on the basis of its interaction with both the host genetics and immunity. Remarkably, microbes which have two such connections are taxonomically related. The best performing bacterial genuses in these two perspectives are Bifidobacterium, Lactobacillus and Akkermansia. We conclude that future therapies targeting microbiota within the framework of chronic inflammatory diseases must consider together host immune and genetic characters associated with microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/fisiologia , Simbiose/genética , Simbiose/imunologia , Animais , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/metabolismo , Imunidade Celular/fisiologia , Imunidade Humoral/fisiologia , Imunoglobulina A Secretora/fisiologia , Padrões de Herança
7.
Sci Rep ; 7: 44331, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281695

RESUMO

The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp.


Assuntos
Cromossomos Bacterianos/química , DNA Bacteriano/genética , Evolução Molecular , Genoma Bacteriano , Sequências Repetidas Invertidas , Lactobacillus delbrueckii/genética , Replicação do DNA , DNA Circular/genética , Lactobacillus delbrueckii/classificação , Modelos Genéticos , Filogenia , Análise de Sequência de DNA
8.
Curr Opin Allergy Clin Immunol ; 16(5): 413-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27518838

RESUMO

PURPOSE OF REVIEW: Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. RECENT FINDINGS: Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. SUMMARY: We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.


Assuntos
Interação Gene-Ambiente , Fenômenos Genéticos , Interações Hospedeiro-Patógeno , Imunidade/genética , Microbiota , Animais , Evolução Biológica , Ecossistema , Homeostase , Humanos , Camundongos , Simbiose
10.
Genome Announc ; 2(4)2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25035318

RESUMO

Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA