Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642630

RESUMO

The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.


Assuntos
Envelhecimento/metabolismo , Jejum/metabolismo , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Transcriptoma , Envelhecimento/genética , Animais , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Proteólise
2.
Nanomedicine (Lond) ; 17(20): 1399-1410, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36255044

RESUMO

Aim: To investigate the effect of incorporating bis(monoacylglycerol)phosphate (BMP) lipid into a lipid nanoparticle and the functional transport of mRNA by the formulated nanoparticles in vivo. Materials & methods: The nanoparticles were prepared from ionizable lipid, 1,2-distearoyl-sn-glycerol-3-phosphocholine, cholesterol, 1,2-dimyristoyl-sn-glycerol PEG 2000, BMP and formulated mRNA encoding human erythropoietin. We measured the effect of BMP on physicochemical properties and impact on functional efficacy to transport mRNA to its target cells/tissue as measured by protein expression both in vitro and in vivo. Results: Lipid nanoparticles composed of BMP displayed increased endosomal membrane fusion and improved mRNA delivery to the cytosol. Conclusion: The results establish the foundation for future development of these nanoparticulated entities by designing new BMP derivatives and correlating structures to enhanced pharmacokinetic profiles.


Assuntos
Nanopartículas , Fosfatos , Humanos , Monoglicerídeos/metabolismo , Nanopartículas/química , RNA Mensageiro
3.
Nat Biotechnol ; 35(10): 960-968, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892074

RESUMO

The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.


Assuntos
Anticorpos/metabolismo , Reprogramação Celular , Técnicas de Química Combinatória , Animais , Comunicação Autócrina , Blastocisto/citologia , Proteínas de Ligação a Calmodulina/metabolismo , Reprogramação Celular/efeitos dos fármacos , Células Clonais , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição SOXB1/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Sci Rep ; 6: 25252, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27143646

RESUMO

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI. Here we report the development of a severe and mild-repetitive TBI model using Drosophila. Using this system, key features that are typically found in mammalian TBI models were also identified in flies, including the activation of inflammatory and autophagy responses, increased Tau phosphorylation and neuronal defects that impair sleep-related behaviors. This novel injury paradigm demonstrates the utility of Drosophila as an effective tool to validate genetic and environmental factors that influence the whole animal response to trauma and to identify prospective therapies needed for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Drosophila , Animais
5.
PLoS One ; 11(10): e0164239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711219

RESUMO

The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.


Assuntos
Autofagia , Drosophila/genética , Sistema Nervoso/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Jejum , Feminino , Genótipo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Longevidade , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA