Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(5): e31212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308646

RESUMO

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Assuntos
Peptídeo C , Humanos , Peptídeo C/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Transdução de Sinais
2.
Clin Sci (Lond) ; 138(5): 289-308, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381744

RESUMO

The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.


Assuntos
Estado Pré-Diabético , Trombose , Doenças Vasculares , Ratos , Animais , Tromboinflamação , Inflamação/patologia , Trombose/metabolismo , Doenças Vasculares/metabolismo , Tecido Adiposo/metabolismo
3.
Mol Pharmacol ; 104(5): 187-194, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567782

RESUMO

Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.


Assuntos
Tecido Adiposo Marrom , Nefropatias , Humanos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Obesidade/complicações , Obesidade/metabolismo , Termogênese , Inflamação/complicações , Inflamação/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Clin Sci (Lond) ; 137(1): 47-63, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36519413

RESUMO

Acute kidney injury (AKI) is a common complication of cardiovascular diseases (CVDs) in both males and females, increasing mortality rate substantially. Premenopausal females appear to be more protected, suggesting a potential protective role of female sex hormones. Here, we tested the hypothesis that ovariectomy (OVX) eliminates the beneficial effect of female sex on renal protection following acute myocardial infarction (MI). Seven days post-MI, both sexes exhibited worsened kidney function and a substantial decrease in total kidney NAD levels. Unlike MI female mice, MI males showed exacerbated morphological alterations with increased proinflammatory, proapoptotic, and profibrotic biomarkers. The expression of NAD+ biosynthetic enzymes NAMPT and NMRK-1 was increased in MI females only, while males showed a substantial increase in NAD+ consuming enzyme PARP-1. OVX did not eliminate the female-sex protection of glomerular morphology but was associated with swelling of proximal convoluted tubules with MI as in males. With OVX, MI females had enhanced proinflammatory cytokine release, and a further decrease in creatinine clearance and urine output was observed. Our findings suggest that MI induced AKI in both sexes with pre-menopausal female mice being more protected. Ovariectomy worsens aspects of AKI in females after MI, which may portend increased risk for development of chronic kidney disease.


Assuntos
Injúria Renal Aguda , Infarto do Miocárdio , Masculino , Humanos , Camundongos , Feminino , Animais , Caracteres Sexuais , NAD , Rim/metabolismo , Infarto do Miocárdio/metabolismo , Ovariectomia/efeitos adversos , Injúria Renal Aguda/metabolismo
5.
J Cardiovasc Pharmacol ; 82(6): 470-479, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773889

RESUMO

ABSTRACT: Raynaud's phenomenon, which results from exaggerated cold-induced vasoconstriction, is more prevalent in females than males. We previously showed that estrogen increases the expression of alpha 2C-adrenoceptors (α 2C -AR), the sole mediator of cold-induced vasoconstriction. This effect of estrogen is reproduced by the cell-impermeable form of the hormone (E 2 :bovine serum albumin [BSA]), suggesting a role of the membrane estrogen receptor, G-protein-coupled estrogen receptor [GPER], in E 2 -induced α 2C -AR expression. We also previously reported that E 2 upregulates α 2C -AR in microvascular smooth muscle cells (VSMCs) via the cAMP/Epac/Rap/JNK/AP-1 pathway, and that E 2 :BSA elevates cAMP levels. We, therefore, hypothesized that E 2 uses GPER to upregulate α 2C -AR through the cAMP/Epac/JNK/AP-1 pathway. Our results show that G15, a selective GPER antagonist, attenuates the E 2 -induced increase in α 2C -AR transcription. G-1, a selective GPER agonist, induced α 2C -AR transcription, which was concomitant with elevated cAMP levels and JNK activation. Pretreatment with ESI09, an Epac inhibitor, abolished G-1-induced α 2C -AR upregulation and JNK activation. Moreover, pretreatment with SP600125, a JNK-specific inhibitor, but not H89, a PKA-specific inhibitor, abolished G-1-induced α 2C -AR upregulation. In addition, transient transfection of an Epac dominant negative mutant (Epac-DN) attenuated G-1-induced activation of the α 2C -AR promoter. This inhibitory effect of Epac-DN on the α 2C -AR promoter was overridden by the cotransfection of constitutively active JNK mutant. Furthermore, mutation of AP-1 site in the α 2C -AR promoter abrogated G1-induced expression. Collectively, these results indicate that GPER upregulates α 2C -AR through the cAMP/EPAC/JNK/AP-1 pathway. These findings unravel GPER as a new mediator of cold-induced vasoconstriction, and present it as a potential target for treating Raynaud's phenomenon in estrogen-replete females.


Assuntos
Transdução de Sinais , Humanos , AMP Cíclico/metabolismo , Estrogênios/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo
6.
Mol Pharmacol ; 102(1): 481-500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34732528

RESUMO

The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/etiologia , Dieta Hiperlipídica , Disbiose/induzido quimicamente , Disbiose/metabolismo , Disbiose/microbiologia , Feminino , Hormônios Esteroides Gonadais/efeitos adversos , Humanos , Inflamação , Masculino , Caracteres Sexuais
7.
Clin Sci (Lond) ; 136(22): 1631-1651, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383188

RESUMO

Sodium-glucose transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 (GLP-1) receptor agonists are newer antidiabetic drug classes, which were recently shown to decrease cardiovascular (CV) morbidity and mortality in diabetic patients. CV benefits of these drugs could not be directly attributed to their blood glucose lowering capacity possibly implicating a pleotropic effect as a mediator of their impact on cardiovascular disease (CVD). Particularly, preclinical and clinical studies indicate that SGLT-2i(s) and GLP-1 receptor agonists are capable of differentially modulating distinct adipose pools reducing the accumulation of fat in some depots, promoting the healthy expansion of others, and/or enhancing their browning, leading to the suppression of the metabolically induced inflammatory processes. These changes are accompanied with improvements in markers of cardiac structure and injury, coronary and vascular endothelial healing and function, vascular remodeling, as well as reduction of atherogenesis. Here, through a summary of the available evidence, we bring forth our view that the observed CV benefit in response to SGLT-2i or GLP-1 agonists therapy might be driven by their ameliorative impact on adipose tissue inflammation.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/efeitos adversos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/complicações , Doenças Metabólicas/tratamento farmacológico , Tecido Adiposo/metabolismo , Peptídeo 1 Semelhante ao Glucagon
8.
Biomed Chromatogr ; 36(9): e5427, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708053

RESUMO

The use of complementary medicine (CMD) for liver support in Hepatitis C virus (HCV) patients sometimes coincides with the administration of oral antiviral drugs to eradicate the virus. This calls for a deep investigation of CMD effects on the pharmacokinetic parameters of these drugs to ensure their safety and efficacy. Silymarin (SLY), as a CMD, was selected to be given orally to healthy male rats with sofosbuvir (SFB) and ledipasvir (LED), a common regimen in HCV treatment. A new and sensitive LC-MS method was validated for the bioassay of SLY, LED, SFB and its inactive metabolite, GS-331007, in spiked plasma with lower limits of quantitation of 10, 1, 4 and 10 ng/ml, respectively. Moreover, the method was further applied to conduct a full pharmacokinetic profile of SFB, GS-331007 and ledipasvir with and without SLY. It was found that co-administration of SLY may expose the patient to unplanned high serum concentrations of SFB and LED. This could be accompanied by a decrease in SFB efficacy, potentially leading to therapeutic failure and the emergence of viral resistance.


Assuntos
Hepatite C , Silimarina , Animais , Antivirais/farmacocinética , Benzimidazóis , Cromatografia Líquida , Quimioterapia Combinada , Fluorenos , Hepacivirus , Hepatite C/tratamento farmacológico , Masculino , Ratos , Silimarina/farmacologia , Sofosbuvir , Espectrometria de Massas em Tandem
9.
BMC Med Educ ; 22(1): 77, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120498

RESUMO

BACKGROUND: Evidence on the effectiveness of team-based learning in teaching critical appraisal to large classes of preclinical medical students is scarce. This study investigated whether team-based learning is effective in teaching critical appraisal to large classes of preclinical medical students. METHODS: Between April 2018 and May 2019, 107 first-year medical students were randomly allocated to receive instruction in critical appraisal using team-based learning or traditional group discussions as teaching methods. The primary outcome was students' performance on the Berlin Questionnaire administered at the end of second year. RESULTS: Students' mean (SD) age was 22.0 (0.7) years. Baseline characteristics of the two groups were similar (all p values > 0.05). The mean (SD) Berlin scores of both groups were 80.4 (11.6) and 80.1 (12.1) for team-based learning and group discussions, respectively. Multivariate stepwise linear regression analysis revealed that the student's academic achievement in medical school was the sole predictor of performance on the Berlin Questionnaire (ß = 1.079, p < 0.001), adjusting for gender, Medical College Admission Test score, student's self-reported preferred teaching method, rank upon admission to medical school, score on the Epidemiology and Biostatistics course, and teaching method (team-based learning versus group discussions). CONCLUSIONS: Team-based learning and group discussions were equally effective instructional strategies to teach critical appraisal to large classes of undergraduate medical students. Replication of our findings is needed in other educational settings. TRIAL REGISTRATION: Current Controlled Trials ISRCTN15430424 , retrospectively registered on December 30, 2021.


Assuntos
Educação de Graduação em Medicina , Estudantes de Medicina , Adulto , Humanos , Faculdades de Medicina , Inquéritos e Questionários , Ensino , Adulto Jovem
10.
Mol Pharmacol ; 99(1): 17-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082267

RESUMO

ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/patologia , Animais , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
11.
J Cell Physiol ; 236(9): 6282-6296, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33634486

RESUMO

Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.


Assuntos
Adipocinas/metabolismo , Doenças Cardiovasculares/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Nicotinamida Fosforribosiltransferase/química , Transdução de Sinais , Remodelação Vascular
12.
Clin Sci (Lond) ; 135(8): 1015-1051, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33881143

RESUMO

Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.


Assuntos
Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Agregação Plaquetária/uso terapêutico , Humanos , Trombose/tratamento farmacológico , Trombose/prevenção & controle
13.
Bioorg Chem ; 113: 105035, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091287

RESUMO

We managed to repurpose the old drug iodoquinol to a series of novel anticancer 7-iodo-quinoline-5,8-diones. Twelve compounds were identified as inhibitors of moderate to high potency on an inhouse MCF-7 cell line, of which 2 compounds (5 and 6) were capable of reducing NAD level in MCF-7 cells in concentrations equivalent to half of their IC50s, potentially due to NAD(P)H quinone oxidoreductase (NQO1) inhibition. The same 2 compounds (5 and 6) were capable of reducing p53 expression and increasing reactive oxygen species levels, which further supports the NQO-1 inhibitory activity. Furthermore, 4 compounds (compounds 5-7 and 10) were qualified by the Development Therapeutic Program (DTP) division of the National Cancer Institute (NCI) for full panel five-dose in vitro assay to determine their GI50 on the 60 cell lines. All five compounds showed broad spectrum sub-micromolar to single digit micromolar GI50 against a wide range of cell lines. Cell cycle analysis and dual staining assays with annexin V-FITC/propidium iodide on MCF-7 cells confirmed the capability of the most active compound (compound 5) to induce cell cycle arrest at Pre-G1 and G2/M phases as well as apoptosis. Both cell cycle arrest and apoptosis were affirmed at the molecular level by the ability of compound 5 to enhance the expression levels of caspase-3 and Bax together with suppressing that of CDK1 and Bcl-2. Additionally, an anti-angiogenic effect was evident with compound 5 as supported by the decreased expression of VEGF. Interesting binding modes within NQO-1 active site had been identified and confirmed by both molecular docking and dymanic experiments.


Assuntos
Antineoplásicos/química , Reposicionamento de Medicamentos , Iodoquinol/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
14.
J Enzyme Inhib Med Chem ; 36(1): 669-684, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33618602

RESUMO

The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antiulcerosos/síntese química , Antiulcerosos/química , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Edema/induzido quimicamente , Feminino , Formaldeído , Humanos , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Modelos Moleculares , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Células THP-1 , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia
15.
Am J Physiol Endocrinol Metab ; 319(5): E835-E851, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865011

RESUMO

Cardiac autonomic neuropathy (CAN) is an early cardiovascular manifestation of type 2 diabetes (T2D) that constitutes an independent risk factor for cardiovascular mortality and morbidity. Nevertheless, its underlying pathophysiology remains poorly understood. We recently showed that localized perivascular adipose tissue (PVAT) inflammation underlies the incidence of parasympathetic CAN in prediabetes. Here, we extend our investigation to provide a mechanistic framework for the evolution of autonomic impairment as the metabolic insult worsens. Early metabolic dysfunction was induced in rats fed a mild hypercaloric diet. Two low-dose streptozotocin injections were used to evoke a state of late decompensated T2D. Cardiac autonomic function was assessed by invasive measurement of baroreflex sensitivity using the vasoactive method. Progression into T2D was associated with aggravation of CAN to include both sympathetic and parasympathetic arms. Unlike prediabetic rats, T2D rats showed markers of brainstem neuronal injury and inflammation as well as increased serum levels of IL-1ß. Experiments on PC12 cells differentiated into sympathetic-like neurons demonstrated that brainstem injury observed in T2D rats resulted from exposure to possible proinflammatory mediators in rat serum rather than a direct effect of the altered metabolic profile. CAN and the associated cardiovascular damage in T2D only responded to combined treatment with insulin to manage hyperglycemia in addition to a nonhypoglycemic dose of metformin or pioglitazone providing an anti-inflammatory effect, coincident with the effect of these combinations on serum IL-1ß. Our present results indicate that CAN worsening upon progression to T2D involves brainstem inflammatory changes likely triggered by systemic inflammation.


Assuntos
Barorreflexo/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Hipoglicemiantes/uso terapêutico , Inflamação/fisiopatologia , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/tratamento farmacológico , Progressão da Doença , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipoglicemiantes/administração & dosagem , Inflamação/sangue , Inflamação/tratamento farmacológico , Insulina/administração & dosagem , Insulina/uso terapêutico , Interleucina-1beta/sangue , Masculino , Pioglitazona/administração & dosagem , Pioglitazona/uso terapêutico , Ratos , Ratos Sprague-Dawley
16.
Clin Sci (Lond) ; 134(12): 1473-1474, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32579179

RESUMO

Adipose biology research has grown rapidly offering new insights into the physiological and pathophysiological roles of different body fat depots. This Thematic Collection of Clinical Science brings a well-rounded timely view of the recent development in this field. We highlight the state of the art on adipose tissue function/dysfunction in the context of cardiovascular and metabolic pathologies.


Assuntos
Tecido Adiposo/patologia , Doenças Cardiovasculares/patologia , Terapia de Alvo Molecular , Adipocinas/metabolismo , Humanos , Inflamação/patologia
17.
Clin Sci (Lond) ; 134(7): 827-851, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32271386

RESUMO

Major shifts in human lifestyle and dietary habits toward sedentary behavior and refined food intake triggered steep increase in the incidence of metabolic disorders including obesity and Type 2 diabetes. Patients with metabolic disease are at a high risk of cardiovascular complications ranging from microvascular dysfunction to cardiometabolic syndromes including heart failure. Despite significant advances in the standards of care for obese and diabetic patients, current therapeutic approaches are not always successful in averting the accompanying cardiovascular deterioration. There is a strong relationship between adipose inflammation seen in metabolic disorders and detrimental changes in cardiovascular structure and function. The particular importance of epicardial and perivascular adipose pools emerged as main modulators of the physiology or pathology of heart and blood vessels. Here, we review the peculiarities of these two fat depots in terms of their origin, function, and pathological changes during metabolic deterioration. We highlight the rationale for pharmacological targeting of the perivascular and epicardial adipose tissue or associated signaling pathways as potential disease modifying approaches in cardiometabolic syndromes.


Assuntos
Adipocinas/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Vasos Sanguíneos/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/tratamento farmacológico , Pericárdio/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Adiposidade/efeitos dos fármacos , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Pericárdio/metabolismo , Pericárdio/patologia , Pericárdio/fisiopatologia , Transdução de Sinais
18.
Curr Hypertens Rep ; 22(3): 23, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114652

RESUMO

PURPOSE OF REVIEW: Cardiovascular disease (CVD) is a non-subsiding disease that remains a leading cause of morbidity and mortality. CVD has been associated with endocrine disruptors, such as bisphenol A (BPA). This review critically summarizes existing findings on BPA and hypertension, with particular attention to genomic, non-genomic, molecular, and cellular mechanisms of action that render BPA as a cardiovascular estrogenic disruptor. RECENT FINDINGS: Owing to its similar estrogenic structure, BPA has been shown to affect various phenotypes that are regulated by the natural hormone, estrogen. Indeed, BPA has been shown to interact with estrogen receptors, located both in the cell membrane and in the cytoplasm/nucleus. Given that estrogen plays an important role in cardiovascular physiology, a contributing role for BPA in CVD would not be unexpected. Existing literature, though limited, established BPA as a source of disruption in cardiovascular health, particularly hypertension. However, effects of BPA are largely dependent on the dose, patient gender, tissue, and developmental stage of the exposed tissue/organ. Accumulating evidence argues for an adverse effect of BPA on blood pressure, with this effect being gender, dose, and time specific. Thus, comprehensive studies which take these factors and other parameters, like epigenetic factors, into account are warranted before a thorough understanding is at hand.


Assuntos
Compostos Benzidrílicos , Estrogênios , Hipertensão , Fenóis , Compostos Benzidrílicos/efeitos adversos , Estrogênios/fisiologia , Humanos , Hipertensão/induzido quimicamente , Fenóis/efeitos adversos
19.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233489

RESUMO

Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.


Assuntos
Aterosclerose/metabolismo , Oclusão de Enxerto Vascular/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Antioxidantes/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/metabolismo , Fármacos Cardiovasculares/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Oclusão de Enxerto Vascular/tratamento farmacológico , Oclusão de Enxerto Vascular/genética , Oclusão de Enxerto Vascular/patologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais
20.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260799

RESUMO

Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.


Assuntos
Sistema Nervoso Autônomo/patologia , Doenças Cardiovasculares/complicações , Diabetes Mellitus Tipo 2/complicações , Inflamação/complicações , Doenças Metabólicas/complicações , Animais , Sistema Nervoso Autônomo/microbiologia , Sistema Nervoso Autônomo/fisiopatologia , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/fisiopatologia , Doença Crônica , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Inflamação/microbiologia , Inflamação/fisiopatologia , Doenças Metabólicas/microbiologia , Doenças Metabólicas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA