RESUMO
Phthalate esters (PEs) one of the widely used plasticizers, and are known for their environmental contamination and endocrine disruption. Hence, it is important to study their distribution in a riverine environment. This study was aimed to determine the Spatio-temporal trends of 16 PEs in surface water, sediment and fish from rivers in southern India, and to assess their environmental health risks. Phthalates were quantified in all matrices with the mean concentrations (∑16PEs) in water, sediment and fish as 35.6 µg/L, 1.25 µg/kg and 17.0 µg/kg, respectively. The Kaveri River is highly loaded with PEs compared to the Thamiraparani and Vellar Rivers. PEs such as DBP, DEHP, DCHP and DiBP were most frequently detected in all matrices, and at elevated concentrations in the dry season. The risk quotient (RQ < 1) suggests that the health risk of PEs from river water and fish to humans is negligible. However, DBP and DEHP from the Kaveri River pose some risk to aquatic organisms (HQ > 1). DEHP from the Vellar River may pose risks to algae and crustaceans. Non-priority phthalate (DiBP) may pose risks to Kaveri and Vellar River fish. The bioaccumulation factor of DCHP and DEHP was found to be very high in Sardinella longiceps and in Centropristis striata, and also exceeded the threshold limit of 5000 suggesting that PEs in the riverine environment may pose some health concerns. This is the first study to assess the spatio-temporal distribution, riverine flux and potential ecological effects of 16 PEs from the southern Indian Rivers.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , China , Ésteres , Peixes , Humanos , Medição de Risco , Água , Poluentes Químicos da Água/análiseRESUMO
BACKGROUND: Phthalates are known endocrine-disrupting chemicals used indiscriminately as constituents in consumer products including food processing, and packaging, cosmetics, personal care and household items. Although, few studies have assessed the risk of breast cancer on exposure to phthalates, their association with breast cancer risk in Indian women have not yet been evaluated. METHODS: We conducted a case-control study involving 171 participants. Urinary concentrations of six phthalate dieters; DMP (Dimethyl phthalate), DEP (Diethyl phthalate), DBP (Dibutyl phthalate), BBP (benzyl butyl phthalate), DEHP (Di-2-ethyl-hexyl phthalate), DINOP (Di-n-octyl phthalate) were estimated by GC-MS and geometric means were calculated. Univariate and multivariable logistic regression was performed to assess breast cancer risk on exposure to phthalates. Genes responsive to phthalates were identified through literature search and matched with NGS data, and gene-enrichment analysis was performed. RESULTS: Significant associations were observed between urinary phthalate concentrations and increased risk of breast cancer for di-butyl phthalate (OR=1.5, 95% CI; 1.06, 2.11, p = 0.002) and di-2-ethyl-hexyl phthalate (>median vs ≤ median; OR=2.97, 95% CI; 1.18, 7.47, p = 0.005) in multivariable analyses. We also found several phthalate-responsive gene mutations in paired breast tumor tissues, which include PTPRD (76.19%), AR (42.86%), CYP1A1 (42.86%), CYP19A1 (23.81%), AHRR (19.05%), PIK3CA (19.05%), CYP1B1 (9.52%), RB1 (9.52%) and MMP9 (9.52%). Gene-enrichment analysis revealed that these genes form a major part of ER/PR, PPAR and HIF-1α-TGF-ß signaling cascades involved in breast cancer CONCLUSION: Although the sample size is small, in this first case-control study from India, DBP and DEHP were found to be associated with increased risk of invasive breast cancer and tumor tissues revealed mutations in several phthalate-responsive genes. It is, therefore suggested that human biomonitoring in India and larger studies evaluating the early life genetic and epigenetic alterations on phthalates exposure are required to establish their role in breast carcinogenesis.
Assuntos
Neoplasias da Mama , Dietilexilftalato , Ácidos Ftálicos , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/urina , Estudos de Casos e Controles , Dibutilftalato/urina , Dietilexilftalato/urina , Feminino , Predisposição Genética para Doença , Humanos , Índia/epidemiologia , Mutação , Ácidos Ftálicos/urinaRESUMO
Perfluorinated compounds (PFCs) are a group of emerging contaminants still less reported in rivers, particularly southern India. Therefore, we investigated the fate of 13 PFCs in three major rivers in southern India during post-monsoon and summer seasons. Twelve PFCs were detected, with an average total PFCs of 1853 ± 1463 pg/l. However, the total PFCs recorded in ppost-monsoon and summer seasons ranged from ND (none detected) to 10,545 pg/l and ND to 4960 pg/l, respectively. Among the individual congeners, perfluoro-n-hexanoic acid (PFHxA) had the highest detection average (929 ± 710 pg/l). The higher detection of short chain PFCs signifies their increasing wide usage as an alternative to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Higher levels of PFCs were observed in summer than post-monsoon season in the river Kaveri, which is mainly attributed to the decrease in river flow. A multidimensional source identification revealed domestic and commercial wastewater as the major source. A correlation analysis showed that most of the detected PFCs share the common source and undergo co-migration into rivers. The flux of PFCs into the Bay of Bengal, loaded by the Kaveri (15 kg/yr) and the Tamiraparani (2.2 kg/yr) rivers, signifies lower per capita emissions than other rivers in India and other countries. Further, the PFC levels found in the rivers can be considered safe for human consumption and aquatic organisms based on international guidelines. Being the first hand report in southern Indian rivers, the results warrant further investigation to understand the exact sources, fate and removal in detail.