Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233817

RESUMO

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Assuntos
Anti-Infecciosos , Bacillus , Humanos , Bacillus/metabolismo , Antioxidantes/farmacologia , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Aspergillus/metabolismo , Staphylococcus aureus , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia
2.
Mar Drugs ; 19(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924262

RESUMO

Epicotripeptin (1), a new cyclic tripeptide along with four known cyclic dipeptides (2-5) and one acetamide derivative (6) were isolated from seagrass-associated endophytic fungus Epicoccum nigrum M13 recovered from the Red Sea. Additionally, two new compounds, cyclodidepsipeptide phragamide A (7) and trioxobutanamide derivative phragamide B (8), together with eight known compounds (9-16), were isolated from plant-derived endophyte Alternaria alternata 13A collected from a saline lake of Wadi El Natrun depression in the Sahara Desert. The structures of the isolated compounds were determined based on the 1D and 2D NMR spectroscopic data, HRESIMS data, and a comparison with the reported literature. The absolute configurations of 1 and 7 were established by advanced Marfey's and Mosher's ester analyses. The antimicrobial screening indicated that seven of the tested compounds exhibited considerable (MIC range of 2.5-5 µg/mL) to moderate (10-20 µg/mL) antibacterial effect against the tested Gram-positive strains and moderate to weak (10-30 µg/mL) antibacterial effect against Gram-negative strains. Most of the compounds exhibited weak or no activity against the tested Gram-negative strains. On the other hand, four of the tested compounds showed considerable antibiofilm effects against biofilm forming Gram-positive and Gram-negative strains.


Assuntos
Alternaria/metabolismo , Antibacterianos/farmacologia , Ascomicetos/metabolismo , Biofilmes/efeitos dos fármacos , Bactérias Aeróbias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Fermentação , Bactérias Aeróbias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138244

RESUMO

The present work aims to design and synthesize novel series of spiro pyrazole-3,3'-oxindoles analogues and investigate their bioactivity as antioxidant and antimicrobial agents, as well as antiproliferative potency against selected human cancerous cell lines (i.e., breast, MCF-7; colon, HCT-116 and liver, HepG-2) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and proapoptotic protein markers. The analytical and spectral data of the all synthesized target congeners were compatible with their structures. Synthesized compounds showed diverse moderate to powerful antimicrobial and antioxidant activities. Results of MTT assay revealed that seven synthesized compounds (i.e., 11a, 11b, 12a, 12b, 13b, 13c and 13h) particularly exhibited significant cytotoxicity against the three cancerous cell lines under investigation. Ranges of IC50 values obtained were 5.7-21.3 and 5.8-37.4 µg/mL against HCT-116 and MCF-7, respectively; which is 3.8 and 6.5-fold (based on the least IC50 values) more significant relative to the reference chemotherapeutic drug doxorubicin. In HepG-2 cells, the analogue 13h the highest cytotoxicity with IC50 value of 19.2µg/mL relative to doxorubicin (IC50 = 21.6µg/mL). The observed cytotoxicity was specific to cancerous cells, as evidenced by the minimal toxicity in the noncancerous control skin-fibroblast cells. ELISA results indicated that the observed antiproliferative effect against examined cancer cell lines is mediated via engaging the activation of apoptosis as illustrated by the significant increase in proapoptotic protein markers (p53, bax and caspase-3) and reduction in the antiapoptotic marker bcl-2. Taken together, results of the present study emphasize the potential of spiro pyrazole-oxindole analogues as valuable candidate anticancer agents against human cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Oxindóis/química , Pirazóis/química , Apoptose/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Relação Estrutura-Atividade
4.
Folia Microbiol (Praha) ; 69(1): 221-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37691075

RESUMO

Laccase-producing fungus (MY3) was successfully isolated from soil samples collected from Mansoura Governorate, Egypt. This fungal isolate has shown a high laccase production level over other isolated fungi. The identity of this isolate was determined by the molecular technique 18SrRNA as Curvularia lunata MY3. The enzyme purification was performed using ammonium sulfate precipitation followed by Sephacryl S-200 and DEAE-Sepharose column chromatography. The denatured enzyme using SDS-PAGE had a molar mass of 65 kDa. The purified laccase had an optimum temperature at 40 °C for enzyme activity with 57.3 kJ/mol activation energy for 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) oxidation. The enzyme had an optimum pH of 5.0, and it has shown a high stability at the acidic range (4.5 to 5.5). Mn2+ and Mg2+ ions enhanced the enzyme activity, while most of the enzyme activity was inhibited by Hg2+. Some compounds such as 2-mercaptoethanol, L-cysteine, and sodium azide at a concentration of 10 mmol/L had shown a high suppression effect on the enzyme activity. The enzyme strongly oxidized ABTS and syringaldazine and moderately oxidized DMP and guaiacol. The antimicrobial activity of the purified enzyme towards three pathogenic strains (Escherichia coli ATCC-25922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC-10231) was evaluated for the potential use as an antimicrobial therapeutic enzyme.


Assuntos
Anti-Infecciosos , Compostos Azo , Benzotiazóis , Curvularia , Lacase , Ácidos Sulfônicos , Lacase/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática , Especificidade por Substrato
5.
Microorganisms ; 11(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110485

RESUMO

Endophytic fungi are a highly unpredictable group of microorganisms that can create a diverse range of secondary metabolites with biological activity. These metabolites enhance the host's ability to tolerate stress caused by various factors, such as disease, insects, pathogens, and herbivores. The secondary metabolites produced by endophytic fungi may have potential applications in agriculture, pharmacy, and medicine. The purpose of this study was to examine the anti-acetylcholinesterase activity of secondary metabolites extracted from endophytic fungi. Aspergillus versicolor SB5 was one of the many endophytic fungi isolated from Juncus rigidus and identified genetically with accession number ON872302. Our study utilized fermentation and microbial cultivation techniques to obtain secondary metabolites. During the course of our investigation, we isolated a compound called Physcion (C1) from the endophytic fungus Aspergillus versicolor SB5. We subsequently identified that C1 possesses inhibitory activity against COX-2 and LOX-1, with IC50 values of 43.10 and 17.54 µg/mL, respectively, making it an effective anti-inflammatory agent. Moreover, we found that C1 also exhibited potent anticholinesterase activity (86.9 ± 1.21%). In addition to these promising therapeutic properties, our experiments demonstrated that C1 possesses strong antioxidant capacity, as evidenced by its ability to scavenge DPPH, ABTS, O2 radicals, and NO and inhibit lipid peroxidation. To further investigate the molecular mechanisms underlying C1 pharmacological properties, we employed SwissADME web tools to predict the compound's ADME-related physicochemical properties and used Molecular Operating Environment and PyMOL for molecular docking studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA