Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(15): 3715-3736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924530

RESUMO

Persistent inward currents (PICs) and persistent outward currents (POCs) regulate the excitability and firing behaviours of spinal motoneurons (MNs). Given their potential role in MN excitability dysfunction in amyotrophic lateral sclerosis (ALS), PICs have been previously studied in superoxide dismutase 1 (SOD1)-G93A mice (the standard animal model of ALS); however, conflicting results have been reported on how the net PIC changes during disease progression. Also, individual PICs and POCs have never been examined before in symptomatic ALS. To fill this gap, we measured the net and individual PIC and POC components of wild-type (WT) and SOD MNs in current clamp and voltage clamp during disease progression (assessed by neuroscores). We show that SOD MNs of symptomatic mice experience a much larger net PIC, relative to WT cells from age-matched littermates. Specifically, the Na+ and Ca2+ PICs are larger, whereas the lasting SK-mediated (SKL) POC is smaller than WT (Na+ PIC is the largest and SKL POC is the smallest components in SOD MNs). We also show that PIC dysregulation is present at symptom onset, is sustained throughout advanced disease stages and is proportional to SOD MN cell size (largest dysregulation is in the largest SOD cells, the most vulnerable in ALS). Additionally, we show that studying disease progression using neuroscores is more accurate than using SOD mouse age, which could lead to misleading statistics and age-based trends. Collectively, this study contributes novel PIC and POC data, reveals ionic mechanisms contributing to the vulnerability differential among MN types/sizes, and provides insights on the roles PIC and POC mechanisms play in MN excitability dysfunction in ALS. KEY POINTS: Individual persistent inward currents (PICs) and persistent outward currents (POCs) have never been examined before in spinal motoneurons (MNs) of symptomatic amyotrophic lateral sclerosis (ALS) mice. Thus, we contribute novel PIC and POC data to the ALS literature. Male SOD MNs of symptomatic mice have elevated net PIC, with larger Na+ and Ca2+ PICs but reduced SKL POC vs. wild-type littermates. Na+ PIC is the largest and SKL POC is the smallest current in SOD cells. The PIC/POC dysregulation is present at symptom onset. PIC dysregulation is sustained throughout advanced disease, and is proportional to SOD MN size (largest dysregulation is in the largest cells, the most vulnerable in ALS). Thus, we reveal ionic mechanisms contributing to the vulnerability differential among MN types/sizes in ALS. Studying disease progression using SOD mice neuroscores is more accurate than using age, which could distort the statistical differences between SOD and WT PIC/POC data and the trends during disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos Transgênicos , Neurônios Motores , Animais , Neurônios Motores/fisiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Camundongos , Medula Espinal/fisiologia , Superóxido Dismutase-1/genética , Masculino , Feminino , Camundongos Endogâmicos C57BL , Potenciais de Ação
2.
J Neurophysiol ; 132(1): 240-258, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865217

RESUMO

Muscle force is modulated by sequential recruitment and firing rates of motor units (MUs). However, discrepancies exist in the literature regarding the relationship between MU firing rates and their recruitment, presenting two contrasting firing-recruitment schemes. The first firing scheme, known as "onion skin," exhibits low-threshold MUs firing faster than high-threshold MUs, forming separate layers akin to an onion. This contradicts the other firing scheme, known as "reverse onion skin" or "afterhyperpolarization (AHP)," with low-threshold MUs firing slower than high-threshold MUs. To study this apparent dichotomy, we used a high-fidelity computational model that prioritizes physiological fidelity and heterogeneity, allowing versatility in the recruitment of different motoneuron types. Our simulations indicate that these two schemes are not mutually exclusive but rather coexist. The likelihood of observing each scheme depends on factors such as the motoneuron pool activation level, synaptic input activation rates, and MU type. The onion skin scheme does not universally govern the encoding rates of MUs but tends to emerge in unsaturated motoneurons (cells firing < their fusion frequency that generates peak force), whereas the AHP scheme prevails in saturated MUs (cells firing at their fusion frequency), which is highly probable for slow (S)-type MUs. When unsaturated, fast fatigable (FF)-type MUs always show the onion skin scheme, whereas S-type MUs do not show either one. Fast fatigue-resistant (FR)-type MUs are generally similar but show weaker onion skin behaviors than FF-type MUs. Our results offer an explanation for the longstanding dichotomy regarding MU firing patterns, shedding light on the factors influencing the firing-recruitment schemes.NEW & NOTEWORTHY The literature reports two contrasting schemes, namely the onion skin and the afterhyperpolarization (AHP) regarding the relationship between motor units (MUs) firing rates and recruitment order. Previous studies have examined these schemes phenomenologically, imposing one scheme on the firing-recruitment relationship. Here, we used a high-fidelity computational model that prioritizes biological fidelity and heterogeneity to investigate motoneuron firing schemes without bias toward either scheme. Our objective findings offer an explanation for the longstanding dichotomy on MU firing patterns.


Assuntos
Modelos Neurológicos , Neurônios Motores , Neurônios Motores/fisiologia , Potenciais de Ação/fisiologia , Recrutamento Neurofisiológico/fisiologia , Humanos , Medula Espinal/fisiologia , Animais , Simulação por Computador , Músculo Esquelético/fisiologia
3.
Calcif Tissue Int ; 114(1): 9-23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603077

RESUMO

Weakness, one of the key characteristics of sarcopenia, is a significant risk factor for functional limitations and disability in older adults. It has long been suspected that reductions in motor unit firing rates (MUFRs) are one of the mechanistic causes of age-related weakness. However, prior work has not investigated the extent to which MUFR is associated with clinically meaningful weakness in older adults. Forty-three community-dwelling older adults (mean: 75.4 ± 7.4 years; 46.5% female) and 24 young adults (mean: 22.0 ± 1.8 years; 58.3% female) performed torque matching tasks at varying submaximal intensities with their non-dominant leg extensors. Decomposed surface electromyographic recordings were used to quantify MUFRs from the vastus lateralis muscle. Computational modeling was subsequently used to independently predict how slowed MUFRs would negatively impact strength in older adults. Bivariate correlations between MUFRs and indices of lean mass, voluntary activation, and physical function/mobility were also assessed in older adults. Weak older adults (n = 14) exhibited an approximate 1.5 and 3 Hz reduction in MUFR relative to non-weak older adults (n = 29) at 50% and 80% MVC, respectively. Older adults also exhibited an approximate 3 Hz reduction in MUFR relative to young adults at 80% MVC only. Our model predicted that a 3 Hz reduction in MUFR results in a strength decrement of 11-26%. Additionally, significant correlations were found between slower MUFRs and poorer neuromuscular quality, voluntary activation, chair rise time performance, and stair climb power (r's = 0.31 to 0.43). These findings provide evidence that slowed MUFRs are mechanistically linked with clinically meaningful leg extensor weakness in older adults.


Assuntos
Fragilidade , Músculo Esquelético , Adulto Jovem , Humanos , Feminino , Idoso , Masculino , Músculo Esquelético/fisiologia , Perna (Membro) , Neurônios Motores/fisiologia , Fatores de Risco , Força Muscular/fisiologia
4.
J Physiol ; 600(22): 4815-4825, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178320

RESUMO

In amyotrophic lateral sclerosis (ALS), abnormalities in motoneuronal excitability are seen in early pathogenesis and throughout disease progression. Fully understanding motoneuron excitability dysfunction may lead to more effective treatments. Yet decades of research have not produced consensus on the nature, role or underlying mechanisms of motoneuron excitability dysfunction in ALS. For example, contrary to Ca excitotoxicity theory, predictions of motoneuronal hyper-excitability, normal and hypo-excitability have also been seen at various disease stages and in multiple ALS lines. Accordingly, motoneuron excitability dysfunction in ALS is a disputed topic in the field. Specifically, the form (hyper, hypo or unchanged) and what role excitability dysfunction plays in the disease (pathogenic or downstream of other pathologies; neuroprotective or detrimental) are currently unclear. Although several motoneuron properties that determine cellular excitability change in the disease, some of these changes are pro-excitable, whereas others are anti-excitable, making dynamic fluctuations in overall 'net' excitability highly probable. Because various studies assess excitability via differing methods and at differing disease stages, the conflicting reports in the literature are not surprising. Hence, the overarching process of excitability degradation and motoneuron degeneration is not fully understood. Consequently, the discrepancies on motoneuron excitability dysfunction in the literature represent a substantial barrier to our understanding of the disease. Emerging studies suggest that biological variables, variations in experimental protocols, issues of rigor and sampling/analysis strategies are key factors that may underlie conflicting data in the literature. This review highlights potential confounding factors for researchers to consider and also offers ideas on avoiding pitfalls and improving robustness of data.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Neurônios Motores/fisiologia , Progressão da Doença
5.
J Neurophysiol ; 125(4): 1450-1467, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689515

RESUMO

Although slice recordings from spinal motoneurons (MNs) are being widely used, the effects of slicing on the measured MN electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal wild-type (WT) and superoxide dismutase-1 (SOD) cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation to estimate the error induced in measured MN electrical properties from spinal slices. Our results show that most MN electrical properties are not adversely affected by slicing, except for cell time constant, cell capacitance, and Ca2+ persistent inward current (PIC), which all exhibited large errors, regardless of the slice condition. Among the examined factors, soma position within the slice appears to be the strongest factor in influencing the magnitude of error in measured MN electrical properties. Transverse slices appear to have the least impact on measured MN electrical properties. Surprisingly, and despite their anatomical enlargement, we found that G85R-SOD MNs experience similar error in their measured electrical properties to those of WT MNs, but their errors are more sensitive to the soma position within the slice than WT MNs. Unless in thick and symmetrical slices, slicing appears to reduce motoneuron type differences. Accordingly, slice studies should attempt to record from MNs at the slice center to avoid large and inconsistent errors in measured cell properties and have valid cell measurements' comparisons. Our results, therefore, offer information that would enhance the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.NEW & NOTEWORTHY Although slice recordings from motoneurons are being widely used, the effects of slicing on the measured motoneuron electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal WT and SOD cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation. Our results offer information that enhances the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Esclerose Lateral Amiotrófica , Animais , Camundongos , Superóxido Dismutase-1
6.
J Neurophysiol ; 124(4): 1285-1307, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937080

RESUMO

Persistent inward currents are important to motoneuron excitability and firing behaviors and also have been implicated in excitotoxicity. In particular, L-type Ca2+ channels, usually located on motoneuron dendrites, play a primary role in amplification of synaptic inputs. However, recent experimental findings on L-type Ca2+ channel behaviors challenge some fundamental assumptions that have been used in interpreting experimental and computational modeling data. Thus, the objectives of this study were to incorporate recent experimental data into an updated, high-fidelity computational model in order to explain apparent inconsistencies and to better elucidate the spatial distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Specifically, the updated model incorporated asymmetric channel activation/deactivation kinetics, depolarization-dependent facilitation, randomness in channel gating, and coactivation of SKL channels. Our simulation results suggest that L-type Ca2+ and SKL channels colocalize primarily on distal dendrites of motoneurons in a punctate expression. Also, punctate expression, as opposed to a homogeneous expression, provides high synaptic current amplification, limits bistability and firing rates, and robustly regulates the Ca2+ persistent inward current, thereby reducing risk of excitotoxicity. The hysteresis and bistability observed experimentally in current-voltage and frequency-current relationships result from the L-type Ca2+ channels' distal location and intrinsic warm-up. Accordingly, our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating excitability, which would provide a strong neuroprotective effect. Our results could provide broader insights into the functional significance of warm-up and punctate expression of ion channels to regulation of cell excitability.NEW & NOTEWORTHY Recent experimental findings on L-type Ca2+ channels challenge fundamental assumptions used in interpreting experimental and computational modeling data. Here, we incorporated recent experimental data into an updated, high-fidelity computational model to explain apparent inconsistencies and better elucidate the distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating motoneuron excitability, providing a strong neuroprotective effect.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Modelos Neurológicos , Neurônios Motores/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Medula Espinal/citologia , Potenciais de Ação , Animais , Canais de Cálcio Tipo L/genética , Gatos , Simulação por Computador , Dendritos/fisiologia , Neurônios Motores/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
7.
J Neurophysiol ; 123(4): 1380-1391, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073942

RESUMO

Experimental, methodological, and biological variables must be accounted for statistically to maximize accuracy and comparability of published neuroscience data. However, accounting for all variables is nigh impossible. Thus we aimed to identify particularly influential variables within published neurological data, from cat, rat, and mouse studies, via a robust statistical process. Our goal was to develop tools to improve rigor in the collection and analysis of data. We strictly constrained experimental and methodological variables and then assessed four key biological variables within motoneuron research: species, age, sex, and cell type. We quantified intraexperimental and interexperimental variances in 11 commonly reported electrophysiological properties of spinal motoneurons. We first assessed variances without accounting for biological variables and then reassessed them while accounting for all four variables. We next assessed variances with all possible combinations of these four variables. We concluded that some motoneuron properties have low intraexperimental, but high interexperimental, variance; that individual motoneuron properties are impacted differently by biological variables; and that some unexplained variances still remain. We report here the optimal combinations of biological variables to reduce interexperimental variance for all 11 parameters. We also rank each parameter by intra- and interexperimental consistency. We expect these results to assist with design of experimental and analytical methods, and to support accuracy in simulations. Furthermore, although demonstrated on spinal motoneuron electrophysiology literature, our approach is applicable to biological data from all fields of neuroscience. This approach represents an important aid to experimental design, comparison of reported data, and reduction of unexplained variance in neuroscience data.NEW & NOTEWORTHY Our meta-analysis shows the impact of species, age, sex, and cell type on lumbosacral motoneuron electrophysiological properties by thoroughly quantifying variances across literature for the first time. We quantify the variances of 11 motoneuron properties with consideration of biological variables, thus providing specific insights for motoneuron modelers and experimenters, and providing a general methodological template for the quantification of variance in neurological data with the consideration of any experimental, methodological, or biological variables of interest.


Assuntos
Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos/fisiologia , Eletrofisiologia/métodos , Neurônios Motores/fisiologia , Projetos de Pesquisa , Medula Espinal/fisiologia , Animais , Gatos , Eletrofisiologia/normas , Camundongos , Ratos , Projetos de Pesquisa/normas , Projetos de Pesquisa/estatística & dados numéricos
8.
J Physiol ; 596(9): 1723-1745, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29502344

RESUMO

KEY POINTS: Motoneuron soma size is a largely plastic property that is altered during amyotrophic lateral sclerosis (ALS) progression. We report evidence of systematic spinal motoneuron soma size plasticity in mutant SOD1-G93A mice at various disease stages and across sexes, spinal regions and motoneuron types. We show that disease-vulnerable motoneurons exhibit early increased soma sizes. We show via computer simulations that the measured changes in soma size have a profound impact on the excitability of disease-vulnerable motoneurons. This study reveals a novel form of plasticity in ALS and suggests a potential target for altering motoneuron function and survival. ABSTRACT: α-Motoneuron soma size is correlated with the cell's excitability and function, and has been posited as a plastic property that changes during cellular maturation, injury and disease. This study examined whether α-motoneuron somas change in size over disease progression in the G93A mouse model of amyotrophic lateral sclerosis (ALS), a disease characterized by progressive motoneuron death. We used 2D- and 3D-morphometric analysis of motoneuron size and measures of cell density at four key disease stages: neonatal (P10 - with earliest known disease changes); young adult (P30 - presymptomatic with early motoneuron death); symptom onset (P90 - with death of 70-80% of motoneurons); and end-stage (P120+ - with full paralysis of hindlimbs). We additionally examined differences in lumbar vs. sacral vs. cervical motoneurons; in motoneurons from male vs. female mice; and in fast vs. slow motoneurons. We present the first evidence of plastic changes in the soma size of spinal α-motoneurons occurring throughout different stages of ALS with profound effects on motoneuron excitability. Somatic changes are time dependent and are characterized by early-stage enlargement (P10 and P30); no change around symptom onset; and shrinkage at end-stage. A key finding in the study indicates that disease-vulnerable motoneurons exhibit increased soma sizes (P10 and P30). This pattern was confirmed across spinal cord regions, genders and motoneuron types. This extends the theory of motoneuron size-based vulnerability in ALS: not only are larger motoneurons more vulnerable to death in ALS, but are also enlarged further in the disease. Such information is valuable for identifying ALS pathogenesis mechanisms.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Tamanho Celular , Modelos Animais de Doenças , Neurônios Motores/patologia , Plasticidade Neuronal , Medula Espinal/patologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo
9.
J Neurophysiol ; 118(1): 161-175, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356481

RESUMO

Burst firing in motoneurons represents the basis for generating meaningful movements. Neuromodulators and inhibitory receptor blocker cocktails have been used for years to induce burst firing in vitro; however, the ionic mechanisms in the motoneuron membrane that contribute to burst initiation and amplitude modulation are not fully understood. Small conductance Ca2+-activated potassium (SK) channels regulate excitatory inputs and firing output of motoneurons and interneurons and therefore, are a candidate for mediating bursting behavior. The present study examines the role of SK channels in the generation of synchronized bursting using an in vitro spinal cord preparation from adult mice. Our results show that SK channel inhibition is required for both initiation and amplitude modulation of burst firing. Specifically, administration of the synaptic inhibition blockers strychnine and picrotoxin amplified the spinal circuit excitatory drive but not enough to evoke bursting. However, when SK channels were inhibited using various approaches, the excitatory drive was further amplified, and synchronized bursting was always evoked. Furthermore, graded SK channel inhibition modulated the amplitude of the burst in a dose-dependent manner, which was reversed using SK channel activators. Importantly, modulation of neuronal excitability using multiple approaches failed to mimic the effects of SK modulators, suggesting a specific role for SK channel inhibition in generating bursting. Both NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors were found to drive the synchronized bursts. The blocking of gap junctions did not disturb the burst synchrony. These results demonstrate a novel mechanistic role for SK channels in initiating and modulating burst firing of spinal motoneurons.NEW & NOTEWORTHY This study demonstrates that cholinergic inhibition or direct blockade of small conductance Ca2+-activated potassium (SK) channels facilitates burst firing in spinal motoneurons. The data provide a novel mechanistic explanation for synchronized bursting initiation and amplitude modulation through SK channel inhibition. Evidence also shows that synchronized bursting is driven by NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors and that gap junctions do not mediate motoneuron synchronization in this behavior.


Assuntos
Potenciais de Ação , Neurônios Motores/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Medula Espinal/fisiologia , Animais , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Medula Espinal/citologia
10.
J Neurophysiol ; 114(3): 1987-2004, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203107

RESUMO

Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal , Medula Espinal/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Células Receptoras Sensoriais/fisiologia , Raízes Nervosas Espinhais/citologia , Raízes Nervosas Espinhais/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos
11.
J Physiol ; 592(7): 1687-703, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24445319

RESUMO

In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitability in spinal motoneurones. Our studies were carried out in an adult mouse model of ALS with a mutated form of superoxide dismutase 1 around the time of the first muscle fibre denervations. We showed that the recruitment current, the voltage threshold for spiking and the frequency-intensity gain in the primary range are all unchanged in most spinal motoneurones, despite an increased input conductance. On its own, increased input conductance would decrease excitability, but the homeostasis for excitability is maintained due to an upregulation of a depolarizing current that is activated just below the spiking threshold. However, this homeostasis failed in a substantial fraction of motoneurones, which became hypoexcitable and unable to produce sustained firing in response to ramps of current. We found similar results both in lumbar motoneurones recorded in anaesthetized mice, and in sacrocaudal motoneurones recorded in vitro, indicating that the lack of hyperexcitability is not caused by anaesthetics. Our results suggest that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by the intrinsic electrical properties of motoneurones but by extrinsic factors such as excessive synaptic excitation.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores , Músculo Esquelético/inervação , Nervos Espinhais/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Predisposição Genética para Doença , Camundongos , Camundongos Transgênicos , Mutação , Degeneração Neural , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fatores de Tempo
12.
BMC Biomed Eng ; 6(1): 9, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350271

RESUMO

Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.

13.
Bioengineering (Basel) ; 11(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061789

RESUMO

(1) Background: The electroencephalogram (EEG) is frequently corrupted by ocular artifacts such as saccades and blinks. Methods for correcting these artifacts include independent component analysis (ICA) and recursive-least-squares (RLS) adaptive filtering (-AF). Here, we introduce a new method, AFFiNE, that applies Bayesian adaptive regression spline (BARS) fitting to the adaptive filter's reference noise input to address the known limitations of both ICA and RLS-AF, and then compare the performance of all three methods. (2) Methods: Artifact-corrected P300 morphologies, topographies, and measurements were compared between the three methods, and to known truth conditions, where possible, using real and simulated blink-corrupted event-related potential (ERP) datasets. (3) Results: In both simulated and real datasets, AFFiNE was successful at removing the blink artifact while preserving the underlying P300 signal in all situations where RLS-AF failed. Compared to ICA, AFFiNE resulted in either a practically or an observably comparable error. (4) Conclusions: AFFiNE is an ocular artifact correction technique that is implementable in online analyses; it can adapt to being non-stationarity and is independent of channel density and recording duration. AFFiNE can be utilized for the removal of blink artifacts in situations where ICA may not be practically or theoretically useful.

14.
Bioengineering (Basel) ; 10(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829635

RESUMO

Fast Blue (FB) and Cholera Toxin-B (CTB) are two retrograde tracers extensively used to label alpha-motoneurons (α-MNs). The overall goals of the present study were to (1) assess the effectiveness of different FB and CTB protocols in labeling α-MNs, (2) compare the labeling quality of these tracers at standard concentrations reported in the literature (FB 2% and CTB 0.1%) versus lower concentrations to overcome tracer leakage, and (3) determine an optimal protocol for labeling α-MNs in young B6SJL and aged C57Bl/J mice (when axonal transport is disrupted by aging). Hindlimb muscles of young B6SJL and aged C57Bl/J mice were intramuscularly injected with different FB or CTB concentrations and then euthanized at either 3 or 5 days after injection. Measurements were performed to assess labeling quality via seven different parameters. Our results show that tracer protocols of lower concentration and shorter labeling durations were generally better in labeling young α-MNs, whereas tracer protocols of higher tracer concentration and longer labeling durations were generally better in labeling aged α-MNs. A 0.2%, 3-day FB protocol provided optimal labeling of young α-MNs without tracer leakage, whereas a 2%, 5-day FB protocol or 0.1% CTB protocol provided optimal labeling of aged α-MNs. These results inform future studies on the selection of optimal FB and CTB protocols for α-MNs labeling in normal, aging, and neurodegenerative disease conditions.

15.
Front Cell Neurosci ; 17: 1093199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874210

RESUMO

Introduction: Bifurcation analysis allows the examination of steady-state, non-linear dynamics of neurons and their effects on cell firing, yet its usage in neuroscience is limited to single-compartment models of highly reduced states. This is primarily due to the difficulty in developing high-fidelity neuronal models with 3D anatomy and multiple ion channels in XPPAUT, the primary bifurcation analysis software in neuroscience. Methods: To facilitate bifurcation analysis of high-fidelity neuronal models under normal and disease conditions, we developed a multi-compartment model of a spinal motoneuron (MN) in XPPAUT and verified its firing accuracy against its original experimental data and against an anatomically detailed cell model that incorporates known MN non-linear firing mechanisms. We used the new model in XPPAUT to study the effects of somatic and dendritic ion channels on the MN bifurcation diagram under normal conditions and after amyotrophic lateral sclerosis (ALS) cellular changes. Results: Our results show that somatic small-conductance Ca2+-activated K (SK) channels and dendritic L-type Ca2+ channels have the strongest effects on the bifurcation diagram of MNs under normal conditions. Specifically, somatic SK channels extend the limit cycles and generate a subcritical Hopf bifurcation node in the V-I bifurcation diagram of the MN to replace a supercritical node Hopf node, whereas L-type Ca2+ channels shift the limit cycles to negative currents. In ALS, our results show that dendritic enlargement has opposing effects on MN excitability, has a greater overall impact than somatic enlargement, and dendritic overbranching offsets the dendritic enlargement hyperexcitability effects. Discussion: Together, the new multi-compartment model developed in XPPAUT facilitates studying neuronal excitability in health and disease using bifurcation analysis.

16.
J Neurophysiol ; 107(3): 808-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22031773

RESUMO

Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns.


Assuntos
Simulação por Computador , Modelos Neurológicos , Neurônios Motores/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Gatos , Dendritos/fisiologia , Humanos , Recrutamento Neurofisiológico/fisiologia , Transmissão Sináptica/fisiologia
17.
J Neurophysiol ; 108(11): 2991-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22972966

RESUMO

N-methyl-d-aspartate (NMDA) receptors are of critical importance for locomotion in the developing neonatal spinal cord in rats and mice. However, due to profound changes in the expression of NMDA receptors in development between the neonatal stages and adulthood, it is unclear whether NMDA receptors are still an important component of locomotion in the adult rodent spinal cord. To shed light on this issue, we have taken advantage of recently developed preparations allowing the intracellular recording of adult motoneurons that control the tail in the sacrocaudal spinal cord of adult mice and rats. We show that in the adult sacrocaudal spinal cord, NMDA induces rhythmic activity recorded on the ventral roots, often coordinated from left to right, as in swimming motions with the tail (fictive locomotion). The adult motoneurons themselves are intrinsically sensitive to NMDA application. That is, when motoneurons are synaptically isolated with TTX, NMDA still causes spontaneous bursts of rhythmic activity, depending on the membrane potential. We show that these bursts in motoneurons depend on an NMDA-mediated persistent inward current and are terminated by the progressive activation of a persistent outward current. These results indicate that motoneurons, along with the central pattern generator, can actively participate in the production of swimminglike locomotor activity in adult rodents.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Neurônios Motores/fisiologia , N-Metilaspartato/farmacologia , Animais , Locomoção/fisiologia , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/fisiologia , Cauda/inervação , Tetrodotoxina/farmacologia
18.
Bioengineering (Basel) ; 9(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134987

RESUMO

Spinal direct current stimulation (sDCS) modulates motoneuron (MN) excitability beyond the stimulation period, making it a potential neurorehabilitation therapy for amyotrophic lateral sclerosis (ALS), a MN degenerative disease in which MN excitability dysfunction plays a critical and complex role. Recent evidence confirms induced changes in MN excitability via measured MN electrophysiological properties in the SOD1 ALS mouse during and following invasive subcutaneous sDCS (ssDCS). The first aim of our pilot study was to determine the clinical potential of these excitability changes at symptom onset (P90-P105) in ALS via a novel non-invasive transcutaneous sDCS (tsDCS) treatment paradigm on un-anesthetized SOD1-G93A mice. The primary outcomes were motor function and survival. Unfortunately, skin damage avoidance limited the strength of applied stimulation intensity, likewise limiting measurable primary effects. The second aim of this study was to determine which orientation of stimulation (anodal vs cathodal, which are expected to have opposing effects) is beneficial vs harmful in ALS. Despite the lack of measured primary effects, strong trends in survival of the anodal stimulation group, combined with an analysis of survival variance and correlations among symptoms, suggest anodal stimulation is harmful at symptom onset. Therefore, cathodal stimulation may be beneficial at symptom onset if a higher stimulation intensity can be safely achieved via subcutaneously implanted electrodes or alternative methods. Importantly, the many logistical, physical, and stimulation parameters explored in developing this novel non-invasive treatment paradigm on unanesthetized mice provide insight into an appropriate and feasible methodology for future tsDCS study designs and potential clinical translation.

19.
J Neurosci ; 30(16): 5544-58, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20410108

RESUMO

A critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions. To achieve this goal, we undertook a computer simulation analysis using realistic morphologies of reconstructed wild-type (WT) and mutant superoxide dismutase-1 (mSOD1) motoneurons. Ion channel parameters of these models were then tuned to match the experimental data on electrical properties obtained from these same motoneurons. We found that the reduced excitability of mSOD1 models was accompanied with decreased specific membrane resistance by approximately 25% and efficacy of synaptic inputs (slow and fast) by 12-22%. Linearity of summation of synaptic currents was similar to WT. We also assessed the contribution of the alteration in dendritic morphology alone to this decreased excitability and found that it reduced the input resistance by 10% and the efficacy of synaptic inputs by 7-15%. Our results were also confirmed in models with dendritic active conductances. Our simulations indicated that the alteration in passive electrical properties of mSOD1 models resulted from concurrent alterations in their morphology and membrane biophysical properties, and consequently altered the motoneuronal dendritic processing of synaptic inputs. These results clarify new aspects of spinal motoneurons malfunction in ALS.


Assuntos
Membrana Celular/genética , Simulação por Computador , Dendritos/fisiologia , Neurônios Motores/fisiologia , Mutação/genética , Superóxido Dismutase/genética , Sinapses/genética , Animais , Membrana Celular/enzimologia , Dendritos/enzimologia , Potenciais Pós-Sinápticos Excitadores/genética , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Neurônios Motores/enzimologia , Inibição Neural/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1 , Sinapses/enzimologia
20.
Comput Biol Med ; 132: 104353, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831814

RESUMO

Up to 50% of amputees abandon their prostheses, partly due to rapid degradation of the control systems, which require frequent recalibration. The goal of this study was to develop a Kalman filter-based approach to decoding motoneuron activity to identify movement kinematics and thereby provide stable, long-term, accurate, real-time decoding. The Kalman filter-based decoder was examined via biologically varied datasets generated from a high-fidelity computational model of the spinal motoneuron pool. The estimated movement kinematics controlled a simulated MuJoCo prosthetic hand. This clear-box approach showed successful estimation of hand movements under eight varied physiological conditions with no retraining. The mean correlation coefficient of 0.98 and mean normalized root mean square error of 0.06 over these eight datasets provide proof of concept that this decoder would improve long-term integrity of performance while performing new, untrained movements. Additionally, the decoder operated in real-time (~0.3 ms). Further results include robust performance of the Kalman filter when re-trained to more severe post-amputation limitations in the type and number of motoneurons remaining. An additional analysis shows that the decoder achieves better accuracy when using the firing of individual motoneurons as input, compared to using aggregate pool firing. Moreover, the decoder demonstrated robustness to noise affecting both the trained decoder parameters and the decoded motoneuron activity. These results demonstrate the utility of a proof of concept Kalman filter decoder that can support prosthetics' control systems to maintain accurate and stable real-time movement performance.


Assuntos
Amputados , Membros Artificiais , Algoritmos , Simulação por Computador , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA