Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 18(1): 460-466, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29268017

RESUMO

Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electrochemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new heterointerface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density >5 × 1013 cm2 with mobility >103 cm2/(V s) in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.

2.
Nano Lett ; 17(9): 5734-5739, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806090

RESUMO

Thermal management plays a critical role in the design of solid state materials for energy conversion. Lead halide perovskites have emerged as promising candidates for photovoltaic, thermoelectric, and optoelectronic applications, but their thermal properties are still poorly understood. Here, we report on the thermal conductivity, elastic modulus, and sound speed of a series of lead halide perovskites MAPbX3 (X = Cl, Br, I), CsPbBr3, and FAPbBr3 (MA = methylammonium, FA = formamidinium). Using frequency domain thermoreflectance, we find that the room temperature thermal conductivities of single crystal lead halide perovskites range from 0.34 to 0.73 W/m·K and scale with sound speed. These results indicate that regardless of composition, thermal transport arises from acoustic phonons having similar mean free path distributions. A modified Callaway model with Born von Karmen-based acoustic phonon dispersion predicts that at least ∼70% of thermal conductivity results from phonons having mean free paths shorter than 100 nm, regardless of whether resonant scattering is invoked. Hence, nanostructures or crystal grains with dimensions smaller than 100 nm will appreciably reduce thermal transport. These results are important design considerations to optimize future lead halide perovskite-based photovoltaic, optoelectronic, and thermoelectric devices.

3.
Nano Lett ; 17(3): 1727-1732, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28240556

RESUMO

We use scanning photocurrent microscopy and time-resolved microwave conductivity to measure the diffusion of holes and electrons in a series of lead bromide perovskite single crystals, APbBr3, with A = methylammonium (MA), formamidinium (FA), and Cs. We find that the diffusion length of holes (LDh+ ∼ 10-50 µm) is on average an order of magnitude longer than that of electrons (LDe- ∼ 1-5 µm), regardless of the A-type cation or applied bias. Furthermore, we observe a weak dependence of LD across the A-cation series MA > FA > Cs. When considering the role of the halide, we find that the diffusion of holes in MAPbBr3 is comparable to that in MAPbI3, but the electron diffusion length is up to five times shorter. This study shows that the disparity between hole and electron diffusion is a ubiquitous feature of lead halide perovskites. As with organic photovoltaics, this imbalance will likely become an important consideration in the optimization of lead halide perovskite solar cells.

4.
Nat Chem ; 9(12): 1170-1174, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168490

RESUMO

The controlled introduction of impurities into the crystal lattice of solid-state compounds is a cornerstone of materials science. Intercalation, the insertion of guest atoms, ions or molecules between the atomic layers of a host structure, can produce novel electronic, magnetic and optical properties in many materials. Here we describe an intercalation compound in which the host [Co6Te8(PnPr3)6][C60]3, formed from the binary assembly of atomically precise molecular clusters, is a superatomic analogue of traditional layered atomic compounds. We find that tetracyanoethylene (TCNE) can be inserted into the superstructure through a single-crystal-to-single-crystal transformation. Using electronic absorption spectroscopy, electrical transport measurements and electronic structure calculations, we demonstrate that the intercalation is driven by the exchange of charge between the host [Co6Te8(PnPr3)6][C60]3 and the intercalant TCNE. These results show that intercalation is a powerful approach to manipulate the material properties of superatomic crystals.

6.
ACS Appl Mater Interfaces ; 3(7): 2551-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21623634

RESUMO

We describe a series of copolymerization studies whereby the nonbenzenoid aromatic methano[10]annulene is incorporated into three different types of random copolymers, two based on polythiophenes (from bithiophene and terthiophene monomers) and one based on poly(ethylene dioxythiophene). Copolymers where the annulene component was in the majority had optical and electrochemical behaviors reminiscent of the annulene homopolymer. In contrast, we found that the annulene influenced polymer electronics at very low feed ratios where the commercial comonomer was in the majority. Copolymerizations are useful approaches to dilute the complex annulene monomers into functional polymers without losing the optoelectronic properties of the annulene homopolymers. These electrochemical results provide important design rules that can be employed for the chemical synthesis of related random copolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA