Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675503

RESUMO

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Assuntos
População Negra/genética , Predisposição Genética para Doença , Genoma Humano/genética , Genômica , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Uganda/epidemiologia , Sequenciamento Completo do Genoma
2.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863251

RESUMO

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Assuntos
Epigenômica , Doenças do Sistema Imunitário/genética , Monócitos/metabolismo , Neutrófilos/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica , Adulto , Idoso , Processamento Alternativo , Feminino , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/metabolismo , Código das Histonas , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Adulto Jovem
3.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
4.
Am J Hum Genet ; 92(1): 107-13, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23246291

RESUMO

The risk of Crohn disease (CD) has a large genetic component. A recent meta-analysis of 6 genome-wide association studies reported 71 chromosomal intervals but does not account for all of the known genetic contribution. Here, we refine localization of the previously reported intervals and also identify additional CD susceptibility genes using a mapping approach that localizes causal variants based on genetic maps in linkage disequilibrium units (LDU maps). Using 2 of the 6 cohorts, 66 of the 71 previously reported loci are confirmed and more precise location estimates for these intervals are given. We identify 78 additional gene regions that pass genome-wide significance, providing strong evidence for 144 genes. Additionally, 56 nominally significant signals, but with more stringent and precise colocalization, are identified. In total, we provide evidence for 200 gene regions confirming that CD is truly multifactorial and complex in nature. Many identified genes have functions that are compatible with involvement in immune/inflammatory processes and seem to have a large effect in individuals with extra ileal as well as ileal inflammation. The precise locations and the evidence that some genes reflect phenotypic subgroups will help identify functional variants and will lead to greater insight of CD etiology.


Assuntos
Doença de Crohn/genética , Mapeamento Cromossômico , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
5.
Am J Hum Genet ; 89(6): 798-805, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152681

RESUMO

Family studies for Crohn disease (CD) report extensive linkage on chromosome 16q and pinpoint NOD2 as a possible causative locus. However, linkage is also observed in families that do not bear the most frequent NOD2 causative mutations, but no other signals on 16q have been found so far in published genome-wide association studies. Our aim is to identify this missing genetic contribution. We apply a powerful genetic mapping approach to the Wellcome Trust Case-Control Consortium and the National Institute of Diabetes and Digestive and Kidney Diseases genome-wide association data on CD. This method takes into account the underlying structure of linkage disequilibrium (LD) by using genetic distances from LD maps and provides a location for the causal agent. We find genetic heterogeneity within the NOD2 locus and also show an independent and unsuspected involvement of the neighboring gene, CYLD. We find associations with the IRF8 region and the region containing CDH1 and CDH3, as well as substantial phenotypic and genetic heterogeneity for CD itself. The genes are known to be involved in inflammation and immune dysregulation. These findings provide insight into the genetics of CD and suggest promising directions for understanding disease heterogeneity. The application of this method thus paves the way for understanding complex inheritance in general, leading to the dissection of different pathways and ultimately, personalized treatment.


Assuntos
Doença de Crohn/genética , Hereditariedade , Desequilíbrio de Ligação , Antígenos CD , Caderinas/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Cromossomos Humanos Par 16 , Enzima Desubiquitinante CYLD , Estudo de Associação Genômica Ampla , Humanos , Fatores Reguladores de Interferon/genética , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética
6.
Nat Commun ; 12(1): 2298, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863903

RESUMO

Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility.


Assuntos
Doenças Autoimunes/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Adulto , Idoso , Doenças Autoimunes/imunologia , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/imunologia , Adulto Jovem
7.
Nat Commun ; 10(1): 5120, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719529

RESUMO

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) specific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosinophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Granulomatose com Poliangiite/genética , Granulomatose com Poliangiite/imunologia , Eosinófilos/patologia , Estudos de Associação Genética , Humanos , Análise da Randomização Mendeliana
9.
Nat Commun ; 8: 16058, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703137

RESUMO

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Assuntos
Plaquetas/fisiologia , Elementos Facilitadores Genéticos , Eritroblastos/química , Variação Genética , Megacariócitos/química , Cromatina , Humanos , Regiões Promotoras Genéticas
10.
Nat Genet ; 48(11): 1303-1312, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668658

RESUMO

Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.


Assuntos
Loci Gênicos , Genoma Humano , Estudo de Associação Genômica Ampla , Cardiopatias/genética , Doenças Hematológicas/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Locos de Características Quantitativas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA