Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 12(9): 2568-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23754784

RESUMO

Virulence of the gastric pathogen Helicobacter pylori (Hp) is directly linked to the pathogen's ability to glycosylate proteins; for example, Hp flagellin proteins are heavily glycosylated with the unusual nine-carbon sugar pseudaminic acid, and this modification is absolutely essential for Hp to synthesize functional flagella and colonize the host's stomach. Although Hp's glycans are linked to pathogenesis, Hp's glycome remains poorly understood; only the two flagellin glycoproteins have been firmly characterized in Hp. Evidence from our laboratory suggests that Hp synthesizes a large number of as-yet unidentified glycoproteins. Here we set out to discover Hp's glycoproteins by coupling glycan metabolic labeling with mass spectrometry analysis. An assessment of the subcellular distribution of azide-labeled proteins by Western blot analysis indicated that glycoproteins are present throughout Hp and may therefore serve diverse functions. To identify these species, Hp's azide-labeled glycoproteins were tagged via Staudinger ligation, enriched by tandem affinity chromatography, and analyzed by multidimensional protein identification technology. Direct comparison of enriched azide-labeled glycoproteins with a mock-enriched control by both SDS-PAGE and mass spectrometry-based analyses confirmed the selective enrichment of azide-labeled glycoproteins. We identified 125 candidate glycoproteins with diverse biological functions, including those linked with pathogenesis. Mass spectrometry analyses of enriched azide-labeled glycoproteins before and after cleavage of O-linked glycans revealed the presence of Staudinger ligation-glycan adducts in samples only after beta-elimination, confirming the synthesis of O-linked glycoproteins in Hp. Finally, the secreted colonization factors urease alpha and urease beta were biochemically validated as glycosylated proteins via Western blot analysis as well as by mass spectrometry analysis of cleaved glycan products. These data set the stage for the development of glycosylation-based therapeutic strategies, such as new vaccines based on natively glycosylated Hp proteins, to eradicate Hp infection. Broadly, this report validates metabolic labeling as an effective and efficient approach for the identification of bacterial glycoproteins.


Assuntos
Proteínas de Bactérias/metabolismo , Glicoproteínas/metabolismo , Helicobacter pylori/metabolismo , Proteômica/métodos , Estômago/microbiologia , Sequência de Aminoácidos , Azidas/metabolismo , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Helicobacter pylori/patogenicidade , Dados de Sequência Molecular , Nanopartículas , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Coloração e Rotulagem , Frações Subcelulares/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
2.
Nucleic Acids Res ; 36(5): 1624-33, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18250086

RESUMO

The Saccharomyces cerevisiae protein Cdc13 tightly and specifically binds the conserved G-rich single-stranded overhang at telomeres and plays an essential role in telomere end-protection and length regulation. The 200 residue DNA-binding domain of Cdc13 (Cdc13-DBD) binds an 11mer single-stranded representative of the yeast telomeric sequence [Tel11, d(GTGTGGGTGTG)] with a 3 pM affinity and specificity for three bases (underlined) at the 5' end. The structure of the Cdc13-DBD bound to Tel11 revealed a large, predominantly aromatic protein interface with several unusual features. The DNA adopts an irregular, extended structure, and the binding interface includes a long ( approximately 30 amino acids) structured loop between strands beta2-beta3 (L(2-3)) of an OB-fold. To investigate the mechanism of ssDNA binding, we studied the free and bound states of Cdc13-DBD using NMR spectroscopy. Chemical shift changes indicate that the basic topology of the domain, including L(2-3), is essentially intact in the free state. Changes in slow and intermediate time scale dynamics, however, occur in L(2-3), while conformational changes distant from the DNA interface suggest an induced fit mechanism for binding in the 'hot spot' for binding affinity and specificity. These data point to an overall binding mechanism well adapted to the heterogeneous nature of yeast telomeres.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ligação a Telômeros/química , Telômero/química , Sítios de Ligação , DNA de Cadeia Simples/metabolismo , Hidrogênio , Cinética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
3.
J Pharm Sci ; 101(4): 1391-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22213631

RESUMO

The purpose of this study was to probe the fate of a model antigen, a cysteine-free mutant of bacteriophage T4 lysozyme, to the level of fine structural detail, as a consequence of its interaction with an aluminum (Al)-containing adjuvant. Fluorescence spectroscopy and differential scanning calorimetry were used to compare the thermal stability of the protein in solution versus adsorbed onto an Al-containing adjuvant. Differences in accessible hydrophobic surface areas were investigated using an extrinsic fluorescence probe, 8-Anilino-1-naphthalenesulfonic acid (ANS). As has been observed with other model antigens, the apparent thermal stability of the protein decreased following adsorption onto the adjuvant. ANS spectra suggested that adsorption onto the adjuvant caused an increase in exposure of hydrophobic regions of the protein. Electrostatic interactions drove the adsorption, and disruption of these interactions with high ionic strength buffers facilitated the collection of two-dimensional (15) N heteronuclear single quantum coherence nuclear magnetic resonance data of protein released from the adjuvant. Although the altered stability of the adsorbed protein suggested changes to the protein's structure, the fine structure of the desorbed protein was nearly identical to the protein's structure in the adjuvant-free formulation. Thus, the adjuvant-induced changes to the protein that were responsible for the reduced thermal stability were not observed upon desorption.


Assuntos
Adjuvantes Imunológicos/química , Muramidase/química , Adsorção , Naftalenossulfonato de Anilina/química , Antígenos/química , Bacteriófago T4/enzimologia , Varredura Diferencial de Calorimetria , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica
4.
Biochemistry ; 45(3): 871-9, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16411763

RESUMO

The single-strand overhang present at telomeres plays a critical role in mediating both the capping and telomerase regulation functions of telomeres. The telomere end-binding proteins, Cdc13 in Saccharomyces cerevisiae, Pot1 in higher eukaryotes, and TEBP in the ciliated protozoan Oxytricha nova, exhibit sequence-specific binding to their respective single-strand overhangs. S. cerevisiae telomeres are composed of a heterogeneous mixture of GT-rich telomeric sequence, unlike in higher eukaryotes which have a simple repeat that is maintained with high fidelity. In yeast, the telomeric overhang is recognized by the essential protein Cdc13, which coordinates end-capping and telomerase activities at the telomere. The Cdc13 DNA-binding domain (Cdc13-DBD) binds these telomere sequences with high affinity (3 pM) and sequence specificity. To better understand the basis for this remarkable recognition, we have investigated the binding of the Cdc13-DBD to a series of altered DNA substrates. Although an 11-mer of GT-rich sequence is required for full binding affinity, only three of these 11 bases are recognized with high specificity. This specificity differs from that observed in the other known telomere end-binding proteins, but is well suited to the specific role of Cdc13 at yeast telomeres. These studies expand our understanding of telomere recognition by the Cdc13-DBD and of the unique molecular recognition properties of ssDNA binding.


Assuntos
Ciclina B/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Telômero/genética , Sequência de Bases , Sítios de Ligação , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Termodinâmica
5.
Biochemistry ; 41(51): 15173-80, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12484754

RESUMO

DNA binding by the effector domain (NarLC) of the response regulator, NarL, is modulated by the phosphorylation state of the receiver domain (NarLN). The receiver domain appears to block the site of DNA binding in the nonphosphorylated state. Phosphorylation is proposed to disrupt this interaction, causing the effector domain to be released and free to bind DNA (Baikalov, I., Schroder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R. P., and Dickerson, R. E. (1996) Biochemistry 35, 11053-61). To better understand this modulation, we analyzed the interaction between the two domains in the absence of a polypeptide linkage. Using multidimensional NMR, we mapped chemical shift changes that occurred during a titration between the two isolated domains. Specific residues in NarLC exhibit large chemical shift changes upon the addition of NarLN. These residues are primarily at the interface between the two domains as seen in the crystal structure. Using the residues with the largest chemical shift changes, we observed a dissociation constant of 88 +/- 7 microM. In the presence of 10 mM MgCl(2), the affinity is reduced 4-fold to about 350 microM. This work shows that the domains interact in trans and that this interaction, while fairly weak, provides a way to monitor the energetics of domain-domain interaction in this system. Phosphorylation of NarLN by a small-molecule phosphate donor, phosphoramidate, decreases this interaction about 25-fold from the nonphosphorylated sample. The results support the model that the mechanism of activation of NarL involves a disruption of the interdomain interface and suggests that the linker is not necessary for the transmission of signal across the domain interface. The linker does play a role in increasing the local concentration of the domains and therefore increasing the amount of closed conformation with respect to the open conformation. We estimate the levels of open conformation to be low (about 1%) in the nonphosphorylated state in the absence of magnesium ion and much higher in the phospho state (near 50%). This modulation of the open or active state via the interaction at the interface may also be applicable to other multidomain response regulator proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Quimiotaxia , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Fixação de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA