Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 79(2 Pt 2): 02A309, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315099

RESUMO

GANIL has been producing many stable and radioactive ion beams for nearly 25 years. Constant progresses have been made in terms of intensity, stability, and reliability. The intensity for some stable metallic beams now exceeds or approaches the p microA level at an energy up to 95 MeV/u, e.g., 1.14 p microA for (36)S (65% enriched) at 77 MeV/u, 0.35 p microA for (58)Ni (63% enriched) at 74 MeV/u. Some recent results with Magnesocene using the metallic ions from volatile compounds method should also make possible the production of metallic beams with an intensity greater than 1 p microA. This has still to be measured. The ISOL facility SPIRAL I has been in operation for almost six years. Up to now, 17 exotic He experiments have been done with 14 target/ion-source (TIS) units; 19 other experiments (with O, Ne, Ar, and Kr) have been achieved with 14 TISs. Statistics show a fairly good ratio of available beam time to scheduled beam time. The radioactive beams and available intensities are compiled in this report. Future developments on radioactive ion beam production are briefly presented, while more details will be discussed elsewhere at this conference.

2.
Rev Sci Instrum ; 79(2 Pt 2): 02A907, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315162

RESUMO

The SPIRAL2 project, currently under construction at GANIL, will include an isotope separator on line based facility for the production and acceleration of radioactive ion beams. A superconducting linear accelerator will accelerate 5 mA deuterons up to 40 MeV and 1 mA heavy ions up to 14.5 MeV/u. These primary beams will be used to bombard both thick and thin targets. We are investigating three different techniques to produce the radioactive ion beams: (1) the neutron induced fission of uranium carbide, (2) the direct interaction of deuterons in a uranium carbide target, and (3) the interaction of a heavy ion beam with a target. All these production systems will be coupled to an ion source. Four kinds of ion sources are foreseen for the ionization of the radioactive atoms: an electron cyclotron resonance ion source, a surface ionization ion source, a forced electron beam induced arc discharge ion source, and a laser ion source depending on the characteristics of the desired radioactive ion beam in terms of intensity, efficiency, purity, etc. A presentation of the SPIRAL2 project and of the different production systems is given.

3.
Rev Sci Instrum ; 79(2 Pt 2): 02A904, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315159

RESUMO

In the framework of the production of radioactive ion beams by the isotope separator online method, a new system has been developed at GANIL/SPIRAL I to produce multicharged alkali ions. The principle, referred to as the "direct 1+/N+ method," consists of a surface ionization source associated with a multicharged electron-cyclotron-resonance ion source without an intermediate mass separator. This new system has been tested online using a (48)Ca primary beam at 60.3 A MeV. The experimental evidence of the direct 1+/N+ process has been obtained for a potential difference between the two sources of 11 V and with a 1+/N+ charge breeding efficiency of 0.04% for (47)K(5+). This value is significantly lower than the value of 6% obtained for stable K ions with the standard 1+/N+ method. A possible explanation is given in the text.

4.
Appl Radiat Isot ; 70(7): 1186-92, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21782459

RESUMO

Fast neutron interrogation with the associated particle technique can be used to identify explosives in cargo containers (EURITRACK FP6 project) and unexploded ordnance on the seabed (UNCOSS FP7 project), by detecting gamma radiations induced by 14 MeV neutrons produced in the 2H(3H,α)n reaction. The origin of the gamma rays can be determined in 3D by the detection of the alpha particle, which provides the direction of the opposite neutron and its time-of-flight. Gamma spectroscopy provides the relative counts of carbon, nitrogen, and oxygen, which are converted to chemical fractions to differentiate explosives from other organic substances. To this aim, Monte Carlo calculations are used to take into account neutron moderation and gamma attenuation in cargo materials or seawater. This paper presents an experimental verification that C, N, and O counts are correctly reproduced by numerical simulation. A quantitative comparison is also reported for silicon, iron, lead, and aluminium.

5.
Appl Radiat Isot ; 69(5): 732-43, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21295986

RESUMO

Gamma-ray spectra produced in carbon, nitrogen, oxygen, sodium, aluminium, silicon, chlorine, calcium, chromium, iron, nickel, copper, zinc, and lead by 14 MeV tagged neutrons have been collected with NaI(Tl) detectors of the EURITRACK system, which low-energy threshold has been reduced to 0.6 MeV to detect gamma rays of major elements like iron. The spectra have been compared with Monte Carlo simulations to check the tabulated gamma-ray production data. A quantitative approach to subtract the scattered neutron background is also reported.

6.
Phys Rev Lett ; 99(25): 252501, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233516

RESUMO

The root-mean-square (rms) nuclear charge radius of 8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of 6He was measured to be 2.068(11) fm, in excellent agreement with a previous result. The significant reduction in charge radius from 6He to 8He is an indication of the change in the correlations of the excess neutrons and is consistent with the 8He neutron halo structure. The experiment was based on laser spectroscopy of individual helium atoms cooled and confined in a magneto-optical trap. Charge radii were extracted from the measured isotope shifts with the help of precision atomic theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA