Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Prep Biochem Biotechnol ; 52(6): 668-680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34612174

RESUMO

Microbial L-asparaginases are aminohydrolases that hydrolyze L-asparagine to L-aspartate. They are used to treat acute lymphoblastic leukemia and Hodgkin's lymphomas and in food industries. Increasing demand for L-ASNases is therefore needed. In the current study, the recombinant L-ASNase from Dickeya chrysanthemi (DcL-ASNase) was cloned into pET28a (+) expression vector and expressed in Escherichia coli as a 6His-tagged fusion protein and purified using Ni2+ chelated Sepharose chromatography resin, yielding a highly purified enzyme. Kinetics analysis allowed the determination of its substrate specificity and the physicochemical parameters that affect enzyme activity. The enzyme showed operational stability at 37 °C and 45 °C. The immunogenicity of the purified DcL-ASNase was evaluated by measuring the IgG and IgM levels in rats after injection. The cytotoxicity DcL-ASNase in selected cancer cell lines and peripheral blood monocytes was determined. The results showed that the enzyme induces pleiotropic effects, including significant morphological changes and the formation of apoptotic bodies. No cytotoxic effects were observed in peripheral blood monocytes at the same concentrations. In addition, gene expression analysis by RT-PCR of apoptotic biomarkers (Bax, survivin, and Ki-67) allowed the study of the apoptotic mechanism induced by DcL-ASNase on THP-1 cells.


Assuntos
Antineoplásicos , Dickeya chrysanthemi , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Antineoplásicos/metabolismo , Asparaginase/química , Asparagina , Escherichia coli/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ratos
2.
Protein Expr Purif ; 181: 105820, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33440252

RESUMO

In previous studies Pseudomonas aeruginosal-ASNase complete coding sequence gene, 984 bp (GenBank accession number KU161101.2) was isolated by PCR, cloned into pET28a(+) vector, expressed in E. coli DE3(BL21) pLysS, purified to apparent homogeneity and biochemically characterized. In the present work we highlight large scale production, affinity purification of the recombinant enzyme, effect of osmolytes on the stability of the l-ASNase and cytotoxicity on different cancer cell lines. Successful overexpression was achieved in E. coli as a 6-His-Tag fusion protein after 18 h of induction with lactose at a concentration of 2 g/L in fermentation medium and at 37 °C. The recombinant enzyme was purified to homogeneity using Ni2+ chelated Fast Flow Sepharose resin with 19758.8 specific activity and 10.28 purification fold. With respect to the effect of osmolytes on the stability of the purified enzyme, the majority of the tested osmolytes namely 5% maltose, 5% mannitol, 30% glycerol and 5% BSA were found to increase the stability of the recombinant l-ASNase as compared to the free enzyme. Triple negative breast cancer cell line, MDA-MB-231 treated with recombinant l-ASNase showed significant morphological changes and the IC50 of the purified enzyme was found to be 3.1 IU. Human leukemia cell line, THP-1 treated with l-ASNase showed apoptotic bodies and morphological changes with IC50 of the purified enzyme 1.75 IU. Moreover, the purified recombinant l-ASNase was found to induced cytotoxic effects on colorectal adenocarcinoma cell line, Caco-2 with IC50 of 68.28 IU. Results of apoptosis assay on THP-1 cells revealed that the purified l-ASNase induced early and late apoptosis at 14.16% and 7.56 respectively as compared to the control untreated cells.


Assuntos
Antineoplásicos , Asparaginase , Proteínas de Bactérias , Pseudomonas aeruginosa/genética , Células A549 , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Asparaginase/química , Asparaginase/genética , Asparaginase/isolamento & purificação , Asparaginase/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Células CACO-2 , Escherichia coli/genética , Escherichia coli/metabolismo , Células HCT116 , Humanos , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Células THP-1
3.
Biol Res ; 54(1): 16, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049576

RESUMO

BACKGROUND: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. RESULTS: MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic ß-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and downregulated expression of anti-apoptotic Bcl-2 protein after 48 h. CONCLUSIONS: Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.


Assuntos
Carcinoma Hepatocelular , Mel , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , beta Catenina
4.
Acta Biochim Pol ; 67(4): 561-570, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319549

RESUMO

Due to the lack of markers (ER, PR, and HER-2/Neu) for the molecular-targeted therapies triple-negative breast cancer (TNBC) is more challenging than other subtypes of breast cancer. Moreover, the conventional chemotherapeutic agents are still the mainstay of most therapeutic protocols and eventually turn into a refractory drug-resistance , hence, more efficient therapeutic regimens are urgently required. The present study aimed to elucidate the effects of PU-H71 combined with DHEA on triple-negative breast cancer cell line MDA-MB-231 and to assess the synergy using the Chou-Talalay method. The combined therapy controlled the expression of an array of antioxidants and metabolizing enzymes, leading to the induction of oxidative stress which in turn induced apoptotic cell death. Our results indicated that the combined treatment with PU-H71 and DHEA exerts a synergistic anti-tumor effect on MDA-MB-231 triple-negative breast cancer cell line.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Desidroepiandrosterona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Purinas/farmacologia , Apoptose/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Modelos Biológicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
PLoS One ; 13(1): e0191423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373579

RESUMO

Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Coletores/citologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Membrana Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Biol. Res ; 54: 16-16, 2021. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1505809

RESUMO

BACKGROUND: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated. The current study focused mainly on investigating the molecular mechanism and synergistic effect of anticancer properties of MH on Doxorubicin (DOX)-mediated apoptotic cell death, using two different p53 statuses (HepG2 and Hep3B) and one non-tumorigenic immortalized liver cell line. RESULTS: MH treatment showed a proliferative inhibitory effect on tested cells in a dose-dependent manner with IC50 concentration of (6.92 ± 0.005%) and (18.62 ± 0.07%) for HepG2 and Hep3B cells, respectively, and induced dramatic morphological changes of Hep-G2 cells, which considered as characteristics feature of apoptosis induction after 48 h of treatment. Our results showed that MH or combined treatments induced higher cytotoxicity in p53-wild type, HepG2, than in p53-null, Hep3B, cells. Cytotoxicity was not observed in normal liver cells. Furthermore, the synergistic effect of MH and Dox on apoptosis was evidenced by increased annexin-V-positive cells and Sub-G1 cells in both tested cell lines with a significant increase in the percentage of Hep-G2 cells at late apoptosis as confirmed by the flow cytometric analysis. Consistently, the proteolytic activities of caspase-3 and the degradation of poly (ADP-ribose) polymerase were also higher in the combined treatment which in turn accompanied by significant inhibitory effects of pERK1/2, mTOR, S6K, oncogenic ß-catenin, and cyclin D1 after 48 h. In contrast, the MH or combined treatment-induced apoptosis was accompanied by significantly upregulated expression of proapoptotic Bax protein and down-regulated expression of anti-apoptotic Bcl-2 protein after 48 h. CONCLUSIONS: Our data showed a synergistic inhibitory effect of MH on DOX-mediated apoptotic cell death in HCC cells. To our knowledge, the present study provides the first report on the anticancer activity of MH and its combined treatment with DOX on HCC cell lines, introducing MH as a promising natural and nontoxic anticancer compound.


Assuntos
Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Mel , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/farmacologia , Linhagem Celular , Apoptose , Sistema de Sinalização das MAP Quinases , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA