Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 22(10): 1008-1017, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33604988

RESUMO

The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign 15 N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of 15 N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.

2.
Chemistry ; 26(1): 230-236, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613014

RESUMO

The principal values of the 13 C chemical shift tensor for the ß and δ polymorphs of π-[TTF⋅⋅⋅TCNE] (TTF=tetrathiafulvalene; TCNE=tetracyanoethylene) have been analyzed to understand the abnormally long intra-dimer bonding of singlet π-[TTFδ+ ⋅⋅⋅TCNEδ- ]. These structures possess 12 intradimer contacts <3.40 Å, with the shortest intra π-[TTF⋅⋅⋅TCNE] separations involving 2-center (2c) C-S and 3c C-C-C orbital overlap contributions between the [TTF]δ+ and [TCNE]δ- . This solid-state NMR study compares the [TTF⋅⋅⋅TCNE] 13 C tensor data against previously reported π-[TTF]2 2+ and π-[TCNE]2 2- homo-dimers to determine how the tensor principal values change as a function of electronic structure for both TTF and TCNE moieties. In the ß and δ phases of [TTF⋅⋅⋅TCNE], the TCNE ethylenic 13 C shift tensors predict TCNE oxidation states of -0.46 and -0.73, respectively. The TTF sites are less similar to benchmark 13 C data with the ß-phase differing primarily in the ethylenic π-electrons. The δ form differs significantly from the homo-dimer data at all principal values at both the ethylenic and CH sites, indicating changes to both the π-electrons and σ-bonds. In both hetero-dimer phases, the NMR changes supports long bond formation at nitrile and CH sites not observed in homo-dimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA