Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Bacteriol ; 204(1): e0042121, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606373

RESUMO

The paralogues RrpA and RrpB, which are members of the MarR family of DNA binding proteins, are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive regulator of mdaB, encoding a flavin-dependent quinone reductase that contributes to the protection from redox stress mediated by structurally diverse quinones, while RrpB negatively regulates the expression of cj1555c (renamed nfrA for NADPH-flavin reductase A), encoding a flavin reductase. NfrA reduces riboflavin at a greater rate than its derivatives, suggesting that exogenous free flavins are the natural substrate. MdaB and NfrA both prefer NADPH as an electron donor. Cysteine substitution and posttranslational modification analyses indicated that RrpA and RrpB employ a cysteine-based redox switch. Complete genome sequence analyses revealed that mdaB is frequently found in Campylobacter and related Helicobacter spp., while nfrA is predominant in C. jejuni strains. Quinones and flavins are redox cycling agents secreted by a wide range of cell types that can form damaging superoxide by one-electron reactions. We propose a model for stress adaptation where MdaB and NfrA facilitate a two-electron reduction mechanism to the less toxic hydroquinones, thus aiding survival and persistence of this major pathogen. IMPORTANCE Changes in cellular redox potential result in alteration in the oxidation state of intracellular metabolites and enzymes; consequently, cells make adjustments that favor growth and survival. The work we present here answers some of the many questions that have remained elusive over the years of investigation into the enigmatic microaerophile bacterium Campylobacter jejuni. We employed molecular approaches to understand the regulation mechanisms and functional analyses to reveal the roles of two novel quinone and flavin reductases; both serve as major pools of cellular redox-active molecules. This work extends our knowledge on bacterial redox sensing mechanisms and the significance of hemostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Helicobacter pylori/enzimologia , Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Flavinas/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Oxirredutases/genética , Quinonas/metabolismo
2.
Cell Microbiol ; 20(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205766

RESUMO

Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.


Assuntos
Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/metabolismo , Ácido Taurocólico/farmacologia , Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Ocludina/metabolismo , Serina Proteases/metabolismo
3.
Cell Microbiol ; 18(4): 561-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26451973

RESUMO

Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells.


Assuntos
Caderinas/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Exossomos/enzimologia , Ocludina/metabolismo , Animais , Aderência Bacteriana , Endocitose , Humanos , Lepidópteros , Proteólise , Serina Proteases/metabolismo
4.
Int Med Case Rep J ; 16: 623-626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789834

RESUMO

New oral anticoagulants (NOACs) have become more popular in the last few decades. Although apixaban has been proven to be safer than warfarin and causes less hemorrhage in comparison to other NOACs, it still poses a risk of spontaneous bleeding. We present here an 81-year-old male known case of heart failure with reduced ejection fraction (HFrEF) associated with an apical thrombus of 0.93×1.29 cm who presents with cognitive decline, slurred speech, and right side weakness following apixaban use for his apical thrombus. On further evaluation of non-contrast brain computerized tomography (CT), there was a large extra-axial subacute subdural hematoma with thick septations in the left parietal region, measuring 2.6 cm in thickness, causing an a mass effect, and an a midline shift of 1 mm. Following neurosurgery, cardiology, and anesthesiology discussions, the surgery was deferred due to his age and coexisting conditions with regular follow-ups. The patient has now gained full consciousness and is currently undergoing physiotherapy. This case highlights an elderly patient with apixaban-induced subdural hemorrhage, which is a rare entity in the medical literature. Although apixaban is safer than other NOACs, it may cause subdural hemorrhage.

5.
Infect Immun ; 80(5): 1690-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354027

RESUMO

Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating bacterial disruption and invasion of the intestinal epithelium. While C. jejuni infection can be reproduced in vitro using intestinal epithelial cell (IEC) lines, low numbers of bacteria invading IECs do not reflect these clinical symptoms. Performing in vitro assays under atmospheric oxygen conditions neither is optimal for microaerophilic C. jejuni nor reflects the low-oxygen environment of the intestinal lumen. A vertical diffusion chamber (VDC) model system creates microaerobic conditions at the apical surface and aerobic conditions at the basolateral surface of cultured IECs, producing an in vitro system that closely mimics in vivo conditions in the human intestine. Ninefold increases in interacting and 80-fold increases in intracellular C. jejuni 11168H wild-type strain bacteria were observed after 24-h coculture with Caco-2 IECs in VDCs under microaerobic conditions at the apical surface, compared to results under aerobic conditions. Increased bacterial interaction was matched by an enhanced and directional host innate immune response, particularly an increased basolateral secretion of the proinflammatory chemokine interleukin-8 (IL-8). Analysis of the invasive ability of a nonmotile C. jejuni 11168H rpoN mutant in the VDC model system indicates that motility is an important factor in the early stages of bacterial invasion. The first report of the use of a VDC model system for studying the interactions of an invasive bacterial pathogen with IECs demonstrates the importance of performing such experiments under conditions that represent the in vivo situation and will allow novel insights into C. jejuni pathogenic mechanisms.


Assuntos
Campylobacter jejuni/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Mucosa Intestinal/citologia , Oxigênio/farmacologia , Actinas/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Campylobacter jejuni/efeitos dos fármacos , Técnicas de Cocultura , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Proteínas de Membrana/metabolismo , Ocludina , Tegafur
6.
Infect Immun ; 80(12): 4089-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22966047

RESUMO

Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Campylobacter jejuni/patogenicidade , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Vesículas Transportadoras/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Células CACO-2 , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/imunologia , Humanos , Interleucina-8/metabolismo , Intestinos/citologia , Intestinos/imunologia , Microscopia Eletrônica de Transmissão , Proteômica , Vesículas Transportadoras/imunologia , Vesículas Transportadoras/ultraestrutura
7.
Open Access Emerg Med ; 14: 591-597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345546

RESUMO

Introduction: Left ventricular thrombus (LVT) is a common complication in patients with systolic heart failure and can cause thromboembolic consequences including stroke. In order to determine the characteristics of LV thrombus among heart failure patients with reduced ejection fraction (HFrEF), the present study was undertaken. Methods and Materials: This was retrospective cross-sectional study conducted from referral tertiary hospital in a year period. A total of 810 transthoracic echocardiograms were carried out in our center from January 2021 to December 2021. Forty participants had met the inclusion criteria of the study. Results: About 75% of the population was male and the mean age at diagnosis was 51 years (SD: 15). Ischemic cardiomyopathy and dilated cardiomyopathy (DCMP) found to be the most underlying cause of LVT represented (57.5% and 42.5% respectively). Hypertension, hypothyroidism, and atrial fibrillation were found to be the commonest associated risk factors of LVT, 45%, 12.5%, and 30% respectively. Simpson's Biplane's approach yielded a mean LVEF of 25.25 ± 6.97. 60% of the patients had a LVEF of ≤25%. The mean LV end-diastolic and end-systolic diameters were 59.2 ± 9.4 mm and 51 ± 8.3mm respectively. Warfarin was administered to 19 (47.5), Rivaroxaban to 8 (20), and Dabigatran to 10 (25). The most prevalent anticoagulant among the individuals in our study was warfarin. A stroke complication was found in 8 patients (20%), two of them were hemorrhagic stroke and they were on dabigatran. A Peripheral Arterial Disease (PAD) affected 6 of the patients (15%). One of those with PAD had also ischemic stroke. Conclusion: This study determines that Ischemic and Dilated cardiomyopathy were the most common cause of left ventricular thrombosis among HFrEF patients in Somalia.

8.
J Bacteriol ; 193(16): 4238-49, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642451

RESUMO

Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide. Despite stringent microaerobic growth requirements, C. jejuni is ubiquitous in the aerobic environment and so must possess regulatory systems to sense and adapt to external stimuli, such as oxidative and aerobic (O(2)) stress. Reannotation of the C. jejuni NCTC11168 genome sequence identified Cj1556 (originally annotated as a hypothetical protein) as a MarR family transcriptional regulator, and further analysis indicated a potential role in regulating the oxidative stress response. A C. jejuni 11168H Cj1556 mutant exhibited increased sensitivity to oxidative and aerobic stress, decreased ability for intracellular survival in Caco-2 human intestinal epithelial cells and J774A.1 mouse macrophages, and a reduction in virulence in the Galleria mellonella infection model. Microarray analysis of gene expression changes in the Cj1556 mutant indicated negative autoregulation of Cj1556 expression and downregulation of genes associated with oxidative and aerobic stress responses, such as katA, perR, and hspR. Electrophoretic mobility shift assays confirmed the binding of recombinant Cj1556 to the promoter region upstream of the Cj1556 gene. cprS, which encodes a sensor kinase involved in regulation of biofilm formation, was also upregulated in the Cj1556 mutant, and subsequent studies showed that the mutant had a reduced ability to form biofilms. This study identified a novel C. jejuni transcriptional regulator, Cj1556, that is involved in oxidative and aerobic stress responses and is important for the survival of C. jejuni in the natural environment and in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Animais , Proteínas de Bactérias/genética , Biofilmes , Linhagem Celular , Larva/microbiologia , Macrófagos , Camundongos , Mariposas/microbiologia , Mutação , Estresse Oxidativo , Oxigênio , Fatores de Tempo
9.
Front Cell Infect Microbiol ; 10: 607704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614526

RESUMO

Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni-mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Gastroenterite , Campylobacter jejuni/genética , Humanos , Virulência , Fatores de Virulência/genética
10.
Front Microbiol ; 10: 2864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921044

RESUMO

The role of the Type VI secretion system (T6SS) in Campylobacter jejuni is poorly understood despite an increasing prevalence of the T6SS in recent C. jejuni isolates in humans and chickens. The T6SS is a contractile secretion machinery capable of delivering effectors that can play a role in host colonization and niche establishment. During host colonization, C. jejuni is exposed to oxidative stress in the host gastrointestinal tract, and in other bacteria the T6SS has been linked with the oxidative stress response. In this study, comparisons of whole genome sequences of a novel human isolate 488 with previously sequenced strains revealed a single highly conserved T6SS cluster shared between strains isolated from humans and chickens. The presence of a functional T6SS in the 488 wild-type strain is indicated by expression of T6SS genes and secretion of the effector TssD. Increased expression of oxidative stress response genes katA, sodB, and ahpC, and increased oxidative stress resistance in 488 wild-type strain suggest T6SS is associated with oxidative stress response. The role of the T6SS in interactions with host cells is explored using in vitro and in vivo models, and the presence of the T6SS is shown to increase C. jejuni cytotoxicity in the Galleria mellonella infection model. In biologically relevant models, the T6SS enhances C. jejuni interactions with and invasion of chicken primary intestinal cells and enhances the ability of C. jejuni to colonize chickens. This study demonstrates that the C. jejuni T6SS provides defense against oxidative stress and enhances host colonization, and highlights the importance of the T6SS during in vivo survival of T6SS-positive C. jejuni strains.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31192166

RESUMO

Campylobacter jejuni outer membrane vesicles (OMVs) contain numerous virulence-associated proteins including the cytolethal distending toxin and three serine proteases. As C. jejuni lacks the classical virulence-associated secretion systems of other enteric pathogens that deliver effectors directly into target cells, OMVs may have a particularly important role in virulence. C. jejuni OMV production is stimulated by the presence of physiological concentrations of the bile salt sodium taurocholate (ST) through an unknown mechanism. The maintenance of lipid asymmetry (MLA) pathway has been implicated in a novel mechanism for OMV biogenesis, open to regulation by host signals. In this study we investigated the role of the MLA pathway in C. jejuni OMV biogenesis with ST as a potential regulator. OMV production was quantified by analyzing protein and lipid concentrations of OMV preparations and OMV particle counts produced by nanoparticle tracking analysis. Mutation of mlaA which encodes the outer membrane component of the MLA pathway significantly increased OMV production compared to the wild-type strain. Detergent sensitivity and membrane permeability assays confirmed the increased OMV production was not due to changes in membrane stability. The presence of 0.2% (w/v) ST increased wild-type OMV production and reduced OMV size, but did not further stimulate mlaA mutant OMV production or significantly alter mlaA mutant OMV size. qRT-PCR analysis demonstrated that the presence of ST decreased expression of both mlaA and mlaC in C. jejuni wild-type strains 11168 and 488. Collectively the data in this study suggests C. jejuni can regulate OMV production in response to host gut signals through changes in expression of the MLA pathway. As the gut bile composition is dependent on both diet and the microbiota, this study highlights the potential importance of diet and lifestyle factors on the varying disease presentations associated with gut pathogen infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/metabolismo , Metabolismo dos Lipídeos , Ácido Taurocólico/farmacologia , Vesículas Transportadoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas , Ácidos e Sais Biliares , Campylobacter jejuni/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação para Baixo , Mutação , Serina Proteases/metabolismo , Virulência
12.
Front Microbiol ; 9: 2452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374341

RESUMO

Chickens are a key food source for humans yet their microbiome contains bacteria that can be pathogenic to humans, and indeed potentially to chickens themselves. Campylobacter is present within the chicken gut and is the leading cause of bacterial foodborne gastroenteritis within humans worldwide. Infection can lead to secondary sequelae such as Guillain-Barré syndrome and stunted growth in children from low-resource areas. Despite the global health impact and economic burden of Campylobacter, how and when Campylobacter appears within chickens remains unclear. The lack of day to day microbiome data with replicates, relevant metadata, and a lack of natural infection studies have delayed our understanding of the chicken gut microbiome and Campylobacter. Here, we performed a comprehensive day to day microbiome analysis of the chicken cecum from day 3 to 35 (12 replicates each day; final n = 379). We combined metadata such as chicken weight and feed conversion rates to investigate what the driving forces are for the microbial changes within the chicken gut over time, and how this relates to Campylobacter appearance within a natural habitat setting. We found a rapidly increasing microbial diversity up to day 12 with variation observed both in terms of genera and abundance, before a stabilization of the microbial diversity after day 20. In particular, we identified a shift from competitive to environmental drivers of microbial community from days 12 to 20 creating a window of opportunity whereby Campylobacter can appear. Campylobacter was identified at day 16 which was 1 day after the most substantial changes in metabolic profiles observed. In addition, microbial variation over time is most likely influenced by the diet of the chickens whereby significant shifts in OTU abundances and beta dispersion of samples often corresponded with changes in feed. This study is unique in comparison to the most recent studies as neither sampling was sporadic nor Campylobacter was artificially introduced, thus the experiments were performed in a natural setting. We believe that our findings can be useful for future intervention strategies and help reduce the burden of Campylobacter within the food chain.

13.
Front Microbiol ; 7: 2117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082970

RESUMO

Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.

14.
Front Microbiol ; 6: 724, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257713

RESUMO

The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.

15.
Cell Microbiol ; 9(10): 2404-16, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17521327

RESUMO

Campylobacter jejuni is the foremost cause of bacterial-induced diarrhoeal disease worldwide. Although it is well established that C. jejuni infection of intestinal epithelia triggers host innate immune responses, the mechanism(s) involved remain poorly defined. Innate immunity can be initiated by families of structurally related pattern-recognition receptors (PRRs) that recognize specific microbial signature motifs. Here, we demonstrated maximal induction of epithelial innate responses during infection with live C. jejuni cells. In contrast when intestinal epithelial cells (IECs) were exposed to paraformaldehyde-fixed bacteria, host responses were minimal and a marked reduction in the number of intracellular bacteria was noted in parallel. These findings suggested a role for intracellular host-C. jejuni interactions in eliciting early innate immunity. We therefore investigated the potential involvement of a family of intracellular, cytoplasmic PRRs, the nucleotide-binding oligomerization domain (NOD) proteins in C. jejuni recognition. We identified NOD1, but not NOD2, as a major PRR for C. jejuni in IEC. We also found that targeting intestinal epithelial NOD1 with small interfering RNA resulted in an increase in number of intracellular C. jejuni, thus highlighting a critical role for NOD1-mediated antimicrobial defence mechanism(s) in combating this infection at the gastrointestinal mucosal surface.


Assuntos
Campylobacter jejuni/fisiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Proteína Adaptadora de Sinalização NOD1/fisiologia , Células CACO-2 , Campylobacter jejuni/genética , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/fisiologia
16.
Proc Natl Acad Sci U S A ; 102(44): 16043-8, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16230626

RESUMO

Campylobacter jejuni is the predominant cause of bacterial gastroenteritis worldwide, but traditional typing methods are unable to discriminate strains from different sources that cause disease in humans. We report the use of genomotyping (whole-genome comparisons of microbes using DNA microarrays) combined with Bayesian-based algorithms to model the phylogeny of this major food-borne pathogen. In this study 111 C. jejuni strains were examined by genomotyping isolates from humans with a spectrum of C. jejuni-associated disease (70 strains), chickens (17 strains), bovines (13 strains), ovines (5 strains), and the environment (6 strains). From these data, the Bayesian phylogeny of the isolates revealed two distinct clades unequivocally supported by Bayesian probabilities (P = 1); a livestock clade comprising 31/35 (88.6%) of the livestock isolates and a "nonlivestock" clade comprising further clades of environmental isolates. Several genes were identified as characteristic of strains in the livestock clade. The most prominent was a cluster of six genes (cj1321 to cj1326) within the flagellin glycosylation locus, which were confirmed by PCR analysis as genetic markers in six additional chicken-associated strains. Surprisingly these studies show that the majority (39/70, 55.7%) of C. jejuni human isolates were found in the nonlivestock clade, suggesting that most C. jejuni infections may be from nonlivestock (and possibly nonagricultural) sources. This study has provided insight into a previously unidentified reservoir of C. jejuni infection that may have implications in disease-control strategies. The comparative phylogenomics approach described provides a robust methodological prototype that should be applicable to other microbes.


Assuntos
Animais Domésticos/microbiologia , Infecções por Campylobacter/transmissão , Campylobacter jejuni/genética , Genoma Bacteriano , Filogenia , Animais , Teorema de Bayes , Infecções por Campylobacter/veterinária , Flagelina/genética , Microbiologia de Alimentos , Marcadores Genéticos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA