Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Pharm Sci ; 23: 231-242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574141

RESUMO

The reduction potentials of bioreductively-activated drugs represent an important design parameter to be accommodated in the course of creating lead compounds and improving the efficacy of older generation drugs.  Reduction potentials are traditionally reported as single-electron reduction potentials, E(1), measured against reference electrodes under strictly defined experimental conditions.  More recently, computational chemists have described redox properties in terms of a molecule's highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), in electron volts (eV).  The relative accessibility of HOMO/LUMO data through calculation using today's computer infrastructure and simplified algorithms make the calculated value (LUMO) attractive in comparison to the accepted but rigorous experimental determination of E(1).  This paper describes the correlations of eV (LUMO) to E(1) for three series of bioreductively-activated benzotriazine di-N-oxides (BTDOs), ring-substituted BTDOs, ring-added BTDOs and a selection of aromatic nitro compounds. The current computational approach is a closed-shell calculation with a single optimization.  Gas phase geometry optimization was followed by a single-point DFT (Density Functional Theory) energy calculation in the gas phase or in the presence of polar solvent.  The resulting DFT-derived LUMO energies (eV) calculated for BTDO analogues in gas phase and in presence of polar solvent (water) exhibited very strong linear correlations with high computational efficiency (r2 = 0.9925) and a very high predictive ability (MAD = 7 mV and RMSD = 9 mV) when compared to reported experimentally determined single-electron reduction potentials.


Assuntos
Teoria da Densidade Funcional , Elétrons , Hipóxia , Tirapazamina/química , Oxirredução , Tirapazamina/análogos & derivados
2.
Eur J Med Chem ; 165: 216-224, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684798

RESUMO

INTRODUCTION: The redox characteristics of 1,2,4-benzotriazine-1,4-dioxides (BTDOs) make them potential radiosensitizing agents for hypoxic cells in solid human cancers. Tirapazamine (TPZ) is the most clinically tested BTDO radiosensitizer, despite its toxicity at effective doses. To date, no BTDOs have been developed as diagnostic markers of tissue hypoxia. HYPOTHESIS: TPZ analogues with appropriate reporting groups can act as potential radiosensitizers and hypoxia selective diagnostics. EXPERIMENTAL AND RESULTS: 3-Chloro-1,2,4-benzotriazine 1-oxide was substituted at the C3 position to afford 3-(2-hydroxyethoxyethyl)-amino-1,2,4-benzotriazine-1-oxide, which was oxidized to 3-(2-hydroxyethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (HO-EOE-TPZ) or converted to 3-(2-tosyloxyethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (Tos-EOE-TPZ). Tos-EOE-TPZ was intended for use as a synthon for preparing 3-(2-azidoethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (N3-EOE-TPZ) and 3-(2-iodoethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxide (I-EOE-TPZ). The logP values (-0.69 to 0.61) for these molecules bracketed that of TPZ (-0.34). Cell line dependent cytotoxicities (IC50) in air were in the 10-100 µM range, with Hypoxia Cytotoxicity Ratios (HCR; IC50-air/IC50-hypoxia) of 5-10. LUMO calculations indicated that these molecules are in the optimal redox range for radiosensitization, offering cell-line-specific Relative Radiosensitization Ratios (RRSR; SER/OER) of 0.58-0.88, compared to TPZ (0.67-0.76). CONCLUSION: The LUMO, IC50, HCR and RRSR values of 3-(2-substituted ethoxyethyl)-amino-1,2,4-benzotriazine-1,4-dioxides are similar to the corresponding values for TPZ, supporting the conclusion that these TPZ analogues are potentially useful as hypoxia-activated radiosensitizers. Further studies into their biodistributions in animal models are being pursued to determine the in vivo potential in hypoxia management.


Assuntos
Hipóxia , Radiossensibilizantes/química , Tirapazamina/análogos & derivados , Triazinas/uso terapêutico , Animais , Biomarcadores , Humanos , Oxirredução , Óxidos , Relação Estrutura-Atividade , Tirapazamina/uso terapêutico , Triazinas/síntese química , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA