Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314957

RESUMO

In the light of advancement and potential extensive use of medication design and therapy, new bis(cyanoacrylamides) incorporating sulphamethoxazole derivatives (7 a-7 f) were synthesized and confirmed by different spectral tools. In vitro anticancer activity towards different human cancer cells (HCT116, MDA-MB-231 and A549) was assessed using MTT assay. Among all derivatives, 4C- and 6C-spacer derivatives (7 e and 7 f) had the most potent growth inhibitory activities against HCT116 cells with IC50 values of 39.7 and 28.5 µM, respectively. 7 e and 7 f induced apoptosis and suppressed migration of HCT116 cells. These compounds also induced a significant increase in caspase-3 and CDH1 activities, and a downregulation of Bcl2 using ELISA. pBR322 DNA cleavage activities of cyanoacrylamides were determined using agarose gel electrophoresis. Furthermore, 7 e and 7 f showed good DNA and BSA binding affinities using different spectroscopic techniques. Furthermore, molecular docking for 7 e and 7 f was performed to anticipate their binding capabilities toward various proteins (Bcl2, CDH1 and BSA). The docking results were well correlated with those of experimental results. Additionally, density functional theory and ADMET study were performed to evaluate the molecular and pharmacokinetic features of 7 e and 7 f, respectively. Thus, this work reveals promising antitumor lead compounds that merit future research and activity enhancement.


Assuntos
Antineoplásicos , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , DNA , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais
2.
Mol Biol Rep ; 49(12): 11775-11793, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36207500

RESUMO

Immunotherapy has been established as a promising therapy for different cancer types. However, many patients experience primary or secondary resistance to treatment. Immune cells and anti-inflammatory factors are regulated by long noncoding RNAs (lncRNAs). In addition, lncRNAs have a role in immune resistance through antigen presentation loss or attenuation, PD-L1 upregulation, loss of T-cell activities, and activation of G-MDSCs and Tregs in the tumor environment. LncRNAs can also influence the interaction between cancer stem cells and immune cells in the tumor microenvironment, potentially resulting in cancer stem cell resistance to immunotherapy. Immunological-related lncRNAs can influence immune responses either directly by affecting neighboring protein-coding genes or indirectly by sponging miRNAs through various mechanisms. We have emphasized the role and levels of expression of lncRNAs that have been linked to immune cell formation, differentiation, and activation, which may have an influence on immunotherapy efficacy.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Imunoterapia/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética , Imunidade
3.
Int J Mol Sci ; 20(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117311

RESUMO

For many years, different probing techniques have mainly relied on antibodies for molecular recognition. However, with the discovery of aptamers, this has changed. The science community is currently considering using aptamers in molecular targeting studies because of the many potential advantages they have over traditional antibodies. Some of these possible advantages are their specificity, higher binding affinity, better target discrimination, minimized batch-to-batch variation, and reduced side effects. Overall, these characteristics of aptamers have attracted scholars to use them as molecular probes in place of antibodies, with some aptamer-based targeting products being now available in the market. The present review is aimed at discussing the potential of aptamers as probes in molecular biology and in super-resolution microscopy.


Assuntos
Aptâmeros de Nucleotídeos , Anticorpos , Técnica de Seleção de Aptâmeros
4.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543067

RESUMO

Nalbuphine is associated with a significant risk of respiratory depression. Its central nervous system entry is hindered by P-glycoproteins, and lower P-glycoprotein activity is a risk factor for respiratory depression. We assessed the effect of hyperlipidemia on nalbuphine pharmacokinetics, brain and liver uptake, and analgesic response following single (2.5 mg/kg) and multiple (2.5 mg/kg/day for three days) doses in normolipidemic and hyperlipidemic rats. Trends of reduction and increase in nalbuphine Cmax and Vdss/F were observed, respectively, in hyperlipidemic rats. Negative correlations were observed between Cmax and serum lipoproteins. Serum-normalized brain and liver levels at 1 h post-dose were lower in hyperlipidemic rats, with brain and liver levels being negatively and positively correlated with TG and HDL, respectively. At steady state, marked nalbuphine accumulation was observed in hyperlipidemic rat brains (R = 1.6) compared with normolipidemic rats (R = 1.1). Nalbuphine analgesic response was not altered by hyperlipidemia at steady state. Caution should be exercised since greater brain accumulation in hyperlipidemic patients treated with nalbuphine could increase their risk of respiratory depression. Our study highlights an unexpected role of lipoproteins in drug absorption and tissue uptake. We also propose a model for reduced nalbuphine absorption based on interaction with intestinal HDL-3.

5.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247507

RESUMO

Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.


Assuntos
Mioglobina , Neoplasias , Humanos , Hipóxia , Mioglobina/metabolismo , Neoplasias/genética , Óxido Nítrico , Oxigênio/metabolismo
6.
Front Oncol ; 11: 590771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996536

RESUMO

BACKGROUND: Myoglobin (MB) is increasingly recognized as a key player in cancer growth and metastasis. Low oxygen tensions, commonly associated with highly aggressive and recurrent cancers, have been shown to regulate its expression in several cancers such as lung, neck, prostate and breast cancer. However, it is not yet known whether it contributes to the growth and spread of brain cancers especially Glioblastoma multiforme (GBM). METHODS: Here we investigate the expression of MB, and its correlation with the hypoxia markers carbonic anhydrase IX (CAIX) and lactate dehydrogenase A (LDHA), in human tissue microarrays of multiple organ tumors, brain tumors, and GBM tumors, and their respective cancer-adjacent normal tissues. Correlation between MB protein expression and tumor grade was also assessed. RESULTS: We show that MB protein is expressed in a wide variety of cancers, benign tumors, cancer-adjacent normal tissues, hyperplastic tissue samples and normal brain tissue, and low oxygen tensions modulate MB protein expression in different brain cancers, including GBM. Enhanced nuclear LDHA immune-reactivity in GBM was also observed. Finally, we report for the first time a positive correlation between MB expression and brain tumor grade. CONCLUSION: Our data suggest that hypoxia regulate MB expression in different brain cancers (including GBM) and that its expression is associated with a more aggressive phenotype as indicated by the positive correlation with the brain tumor grade. Additionally, a role for nuclear LDHA in promoting aggressive tumor phenotype is also suggested based on enhanced nuclear expression which was observed only in GBM.

7.
Cancer Cell Int ; 10: 33, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20828399

RESUMO

BACKGROUND: Cytoglobin (Cygb) and neuroglobin (Ngb) are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM) cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX), a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. RESULTS: Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel) showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. CONCLUSIONS: Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human tumor tissues suggests that these globin molecules may be part of the repertoire of defense mechanisms that allow cancer cells to survive in hypoxic microenvironments.

8.
Immunol Invest ; 39(8): 833-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20718661

RESUMO

Matrix metalloproteinases (MMPs) have been implicated in the degradation of the extracellular matrix in normal and pathological tissue remodelling. Among the MMPs, MMP-2 is the most commonly studied protease that has been involved in cancer, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. In this study, monoclonal antibodies (MAbs) were generated against human MMP-2, purified, characterized and tested for their ability to inhibit the enzymatic activity of MMP-2. Out of 12 positive clones generated against MMP-2, 2 clones (F2-1-11 and G8-25-5) were selected for further characterization. The selected clones react specifically with human pro and active form of MMP-2 in enzyme linked immunosorbant assay (ELISA), dot immunobinding assay (DIA) and Western blot and do not cross react with other human metalloproteinases or MMP-2 from other species. Additionally, these MAbs (F2-1-11 and G8-25-5) selectively inhibit collagenolytic and gelatinolytic activity of APMA ((p-aminophenylmercuric acetate)-activated-pro-MMP-2 and MMP-2, respectively.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Gelatinases/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Western Blotting , Colagenases/imunologia , Colagenases/metabolismo , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Gelatinases/imunologia , Gelatinases/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
9.
Front Oncol ; 10: 199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195174

RESUMO

The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.

10.
Int J Nanomedicine ; 15: 821-837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32103939

RESUMO

INTRODUCTION: Hepatocellular carcinoma represents a major health problem with the related death numbers still increasing. Active targeting is considered an attractive choice for the development of selective therapeutics with limited side effects and improved efficiency. In this study, we report the design, development and evaluation of a novel dual-ligand functionalized core-shell chitosan-based nanocarrier for the selective delivery of doxorubicin (DOX) for treatment of hepatocellular carcinoma (HCC). METHODS: Following factorial design experiments, DOX was initially complexed with negatively charged carboxymethyl chitosan-g-poly(acrylate) and then the complex was coated with a positively charged dual-ligand (lactobionic acid and glycyrrhetinic acid)-conjugated chitosan. The developed active targeting system was then tested in vitro on Hep-G2 cells using flow cytometry and fluorescence imaging. RESULTS: The obtained results proved the ability of the dual-ligand system to enhance the intracellular uptake of the drug by 4-fold and 8-fold after 4 hrs and 24 hrs of incubation, respectively. The efficiency of the dual-ligand functionalized nanoparticles was also tested in vivo on Wistar rats with induced liver tumors. Testing of serum biomarkers (albumin, creatinine, urea, alpha fetoprotein, ALT, AST and ALP) in addition to histopathological microscopic examination of liver, kidney and heart tissues confirmed the enhanced safety of the developed targeted nanocarrier system compared to the conventional DOX. DISCUSSION: The developed targeted system showed improved intracellular drug delivery and uptake as well as enhanced safety profile. The nanoparticles were formed based on electrostatic interactions providing the flexibility that allows their use as a model for delivery of other drugs and other targets.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/análogos & derivados , Portadores de Fármacos/química , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Nanopartículas/química , Animais , Carcinoma Hepatocelular/patologia , Quitosana/química , Dissacarídeos/química , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ácido Glicirretínico/química , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/patologia , Ratos Wistar
11.
Oncol Rep ; 43(3): 975-985, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020230

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive human brain cancer. Little is known regarding how these cells adapt to the harsh tumor microenvironment, and consequently survive and resist various treatments. Myoglobin (MB), the oxygen­binding hemoprotein, has been shown to be ectopically expressed in different human cancers and cell lines, and its expression is hypothesized to be an adaptation mechanism to hypoxia. The aim of the present study was to determine whether cancer­related and hypoxia­responsive MB mRNA splice variants are expressed in human GBM cells and glioblastoma tumor xenografts, and whether their expression is induced by hypoxia and correlated with hypoxia markers [lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), vascular endothelial growth factor (VEGF) and carbonic anhydrase IX (CAIX)]. Conventional reverse transcription (RT)­PCR, DNA sequencing, RT­quantitative PCR and immunohistochemistry were conducted to investigate MB expression in hypoxia­sensitive (M010b, M059J) and ­tolerant (M059K, M006xLo) GBM cell lines that also exhibit differential response towards radiation, rendering them a valuable translational GBM model. It was revealed that cancer­related MB variants 9, 10, 11 and 13 were expressed in GBM cells under normoxia, and following hypoxia, their expression exhibited modest­to­significant upregulation that correlated with hypoxia markers. It was also demonstrated that MB was upregulated in hypoxic microregions of glioblastoma tumor xenografts that were stained in matched tumor regions of serial tumor sections with the hypoxia markers, pimonidazole, CAIX, VEGF and LDHA. The present study identified myoglobin as a potential contributor to the hypoxia adaptation and survival strategies of glioblastoma, and may explain the aggressiveness and frequent recurrence rates associated with GBM.


Assuntos
Biomarcadores Tumorais/genética , Glioblastoma/genética , Mioglobina/genética , Hipóxia Tumoral/genética , Anidrase Carbônica IX/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Transportador de Glucose Tipo 1/genética , Xenoenxertos , Humanos , L-Lactato Desidrogenase/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética
12.
Clin Chem Lab Med ; 47(8): 993-1000, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19569980

RESUMO

BACKGROUND: Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, play an important role in tumor invasion and metastasis. This study aimed to determine the serum levels of MMP-2, MMP-9, 130- and 225-kDa gelatinolytic bands and conventional tumor markers, carcinoembryonic antigen (CEA) and cancer antigen (CA) 19-9, in patients with gastrointestinal cancers. The relationship between these parameters and clinicopathological factors was also studied. METHODS: Sera from controls (n=19), and patients with colorectal (n=47) and gastric (n=34) cancer were collected prospectively. The gelatinolytic activities of MMP-2, MMP-9, 130- and 225-kDa bands were determined using gelatin zymography. CEA and CA 19-9 were determined using immunoradiometric assay (IRMA). RESULTS: Serum levels of MMP-9, 130- and 225-kDa gelatinolytic bands, CEA, and CA 19-9, but not MMP-2, in colorectal and gastric cancer were significantly higher than that of controls. No significant correlation was found between histological grade or clinical stage and levels of MMP-9, 130- and 225-kDa gelatinolytic bands, which were correlated (r=0.61-0.89, p<0.005). CONCLUSIONS: Our findings suggest that zymographic determination of MMP-9, 130- and 225-kDa gelatinolytic bands in colorectal and gastric cancer may be useful in studying these types of cancer in parallel with conventional tumor markers.


Assuntos
Biomarcadores Tumorais/sangue , Antígeno Carcinoembrionário/sangue , Neoplasias Colorretais/diagnóstico , Metaloproteinase 2 da Matriz/sangue , Neoplasias Gástricas/diagnóstico , Idoso , Antígeno CA-19-9/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias Gástricas/sangue , Neoplasias Gástricas/patologia
13.
Shock ; 29(2): 262-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18386393

RESUMO

Shock and tissue hypoperfusion are common after asphyxia. We compared systemic and regional hemodynamic effects of epinephrine and dopamine in the treatment of shock and hypotension in asphyxiated newborn piglets resuscitated with 100% oxygen. Twenty-four piglets (1-3 days old; weight, 1.4-2.6 kg) were acutely instrumented to measure cardiac index (CI), carotid, mesenteric and renal arterial blood flows, and mean systemic (SAPs) and pulmonary arterial pressures (PAPs). Piglets had normocapnic alveolar hypoxia (F(IO2)=0.08-0.10) for 50 min and reoxygenated with F(IO2)=1.0 for 1 h then F(IO2)=0.21 for 3.5 h. After 2 h reoxygenation, either dopamine (2 microg kg(-1) min(-1)) or epinephrine (0.2 microg kg(-1) min(-1)) was given for 30 min in a blinded randomized manner, which was then increased to maintain SAP (within 10% of baseline, pressure-driven dose) for 2 h. Hypoxia caused hypotension (SAP, 44%+/-3% of baseline), cardiogenic shock (CI, 41%+/-4%), and metabolic acidosis (mean pH, 7.04-7.09). Upon reoxygenation, hemodynamic parameters immediately recovered but gradually deteriorated during 2 h with SAP at 45+/-1 mmHg, CI at 74+/-9% of baseline, and pH 7.32+/-0.03. Low doses of either drug had no significant systemic and renal hemodynamic response. Epinephrine (0.3-1.5 microg kg(-1) min(-1)) for 2 h increased SAP and CI (with higher stroke volume) and decreased pulmonary vascular resistance (with reduced PAP-SAP ratio), whereas the responses with dopamine (10-25 microg kg(-1) min(-1)) were modest. Low-dose epinephrine improved mesenteric and carotid arterial flows, whereas the pressure-driven doses of epinephrine and dopamine increased carotid and mesenteric arterial flows, respectively. To treat shock in asphyxiated newborn piglets resuscitated with 100% oxygen, epinephrine exhibits an inotropic action compared with dopamine, whereas both catecholamines can increase carotid and mesenteric perfusion.


Assuntos
Dopamina/farmacologia , Epinefrina/farmacologia , Oxigênio/metabolismo , Ressuscitação/métodos , Choque/tratamento farmacológico , Animais , Animais Recém-Nascidos , Transporte Biológico/efeitos dos fármacos , Catecolaminas/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipóxia/fisiopatologia , Circulação Pulmonar/efeitos dos fármacos , Choque/fisiopatologia , Suínos
14.
Intensive Care Med ; 34(6): 1114-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18236027

RESUMO

OBJECTIVES: We examined the effects of 18%, 21% or 100% oxygen on the recovery of the heart and kidneys in a short-term survival model of neonatal hypoxia-reoxygenation (HR). DESIGN: Controlled, block-randomized animal study. SETTING: University animal research laboratory. SUBJECT: Large White piglets (1-3 days, 1.7-2.5 kg). INTERVENTIONS: Piglets received normocapnic hypoxia (15% oxygen) (2 h) and were reoxygenated with 18%, 21% or 100% oxygen (1 h) (n=7 per group) then 21% oxygen (2 h). Sham-operated pigs (n=7) had no HR. MEASUREMENTS AND RESULTS: Seventeen of 21 HR piglets recovered from moderate hypoxemia (mean PaO(2) 27-33 mmHg and pH 7.20-7.22, associated with tachycardia and hypotension). Systemic arterial pressure, heart rate, left renal arterial flow, oxygen transport, plasma troponin-I and creatinine levels were monitored and recovered with no differences among HR groups over 4 days after resuscitation. The 100% group had increased myocardial oxidative stress (oxidized glutathione levels) and the most cardiac HR-induced injury. There were no differences in renal oxidative stress and HR-induced injury among groups. Early oxygenation at 1 h after resuscitation correlated with the plasma troponin-I level at 6 h (r = -0.51 and 0.64 for SaO(2) and systemic oxygen extraction ratio, p<0.05, respectively) and renal HR-induced injury at 4 days (r =0.61 for renal oxygen delivery, p<0.05). CONCLUSIONS: In hypoxic piglets, 18%, 21% and 100% reoxygenation caused similar systemic and renal hemodynamic and functional recovery. The indicators of oxidative stress and HR injury in myocardial and renal tissues suggest that the reoxygenation with 100% oxygen appears sub-optimal and the use of 18% oxygen offers no further benefit, when compared with 21% oxygen.


Assuntos
Hipóxia/terapia , Rim/metabolismo , Miocárdio/metabolismo , Oxigenoterapia/métodos , Análise de Variância , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Velocidade do Fluxo Sanguíneo , Distribuição de Qui-Quadrado , Ensaio de Imunoadsorção Enzimática , Glutationa/metabolismo , Hemodinâmica , Hipóxia/fisiopatologia , Rim/irrigação sanguínea , Fígado/irrigação sanguínea , Fígado/metabolismo , Estresse Oxidativo , Distribuição Aleatória , Suínos
15.
Resuscitation ; 77(1): 111-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18083289

RESUMO

BACKGROUND: Neonatal hypoxia-ischemia (HI) is a common complication of pregnancy and delivery. Conventional clinical practice is to resuscitate neonates with 100% O2, and evidence is building to suggest resuscitation with lower O2 concentrations is safer. Significant neurochemical changes are associated with HI injury and persistent changes in amino acids are related to cell death, therefore we used a swine survival model of neonatal HI-reoxygenation (HI/R) to investigate the effects of resuscitation with 100%, 21% or 18% O2 on amino acid neurotransmitters. METHODS: In a blinded randomized fashion, following permanent ligation of the left common carotid artery, newborn pigs (1-4 d, 1.7-2.5 kg) received alveolar normocapnic hypoxia (FiO2=0.15, 2h) and were reoxygenated with 18%, 21% or 100% O2. After a 4-day survival period, brain regions were processed for amino acid levels using high-performance liquid chromatography (HPLC). RESULTS: Results showed that resuscitation with different O2 concentrations caused hemispheric and regional changes in all amino acids investigated including glutamate, alanine, gamma-amino butyric acid, glycine and aspartate, 4 days post-HI. Resuscitation with 100% O2 significantly increased glutamate and glycine in the dorsal cortex contralateral to the ligated common carotid artery, compared to piglets resuscitated with 21% O2. Additionally, piglets resuscitated with 21% O2 had significantly lower alanine levels than those resuscitated with 18% O2. CONCLUSION: Significant resuscitation-dependent changes in amino acid neurotransmitters are still evident 4 days post-HI in the newborn piglet. These data suggest that persistent changes in neurochemistry occur 4 days after HI/R and further studies are warranted to elucidate the consequences of this on neonatal brain development.


Assuntos
Aminoácidos/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Oxigenoterapia , Ressuscitação/métodos , Análise de Variância , Animais , Animais Recém-Nascidos , Cromatografia Líquida de Alta Pressão , Suínos
16.
Nutrients ; 10(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642372

RESUMO

Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.


Assuntos
Ácido Araquidônico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Glioblastoma/tratamento farmacológico , Proteína Quinase C/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacos
17.
Mol Neurobiol ; 55(10): 8188-8202, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29516284

RESUMO

Overactivation of angiotensin-converting enzyme/angiotensin 2/angiotensin receptor-1 (ACE/Ang2/AT1) axis provokes amyloid-ß-induced apoptosis and neurodegeneration in Alzheimer's disease (AD). Moreover, activation of AT1 impairs the survival pathway phosphoinositide 3-kinase/protein kinase B (PI3K/Akt). Interestingly, the coupling between ACE2/Ang(1-7)/Mas receptor (MasR) axis and PI3K/Akt activation opposes AT1-induced apoptosis. However, the effect of in vivo stimulation of MasR against AD and its correlation to PI3K/Akt is not yet elucidated. Thus, the present study aimed to investigate the relationship between PI3K/Akt pathway and the activation of ACE2/MasR in the AD model of D-galactose-ovariectomized rats. AD features were induced following 8-week injection of D-galactose (150 mg/kg, i.p.) in ovariectomized female rats. The ACE2 activator dimenazine (15 mg/kg, i.p.) was daily administered for 2 months. DIZE administration boosted the hippocampal expression of ACE2 and Mas receptors while suppressing AT1 receptor. Notably, dimenazine enhanced the expression of phosphorylated survival factors (PI3K, Akt, signal transducer, and activator of transcription-3) and neuroplasticity proteins such as cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor along with nicotinic and glutamatergic receptors. Such effects were accompanied by suppressing phosphorylated tau and glycogen synthase kinase3ß along with caspase-3, cytochrome-c, nuclear factor kappa B, tumor necrosis factor alpha, and glial fibrillary acidic protein contents. Dimenazine ameliorated the histopathological damage observed in D-galactose-ovariectomized rats and improved their learning and recognition memory in Morris water maze and novel object recognition tests. In conclusion, dimenazine-induced stimulation of ACE2/Ang(1-7)/Mas axis subdues cognitive deficits in AD most probably through activation of PI3K/Akt pathway.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Angiotensina I/metabolismo , Diminazena/uso terapêutico , Ovariectomia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Enzima de Conversão de Angiotensina 2 , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Diminazena/farmacologia , Feminino , Galactose , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Biogênese de Organelas , Fosforilação/efeitos dos fármacos , Proto-Oncogene Mas , Ratos Wistar , Receptores de Glutamato/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/metabolismo
18.
Shock ; 27(4): 448-54, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17414430

RESUMO

Thromboembolic and bleeding complications are common after asphyxia. We studied the temporal effects of different oxygen concentrations used in resuscitating hypoxic newborn piglets on platelet aggregatory function. Alveolar normocapnic hypoxia (fractional inspired oxygen concentration = 0.15) was induced in piglets (1-4 d, 1.7-2.5 kg) for 2 h, followed by reoxygenation with 18%, 21%, or 100% oxygen for 1 h and then 21% for 2 h (n = 8-9 per group). Control piglets underwent surgery with no hypoxia-reoxygenation (n = 5). Platelet counts and collagen-stimulated (2-10 microg/mL) whole blood aggregation were studied at normoxic baseline and at 3 h, 2 d, and 4 d of recovery. Platelet activation markers including plasma thromboxane B2 and matrix metalloproteinase 2 and 9 levels were measured. At 2 h hypoxia (mean PaO2 30-35 mmHg), all piglets were hypotensive and acidotic (mean pH 7.19-7.24). In 100% reoxygenation piglets, the concentration-response curves of collagen-stimulated platelet aggregation were significantly shifted upward at 3 h and 2 d of recovery with no differences in the collagen concentration required to induce 50% of maximum aggregation, and this normalized to baseline on 4 d. In the 18% and 21% reoxygenated groups, there were no changes in platelet aggregation during the experiment. Platelet counts were not different between groups and over time. Hypoxic-reoxygenated piglets had increased plasma thromboxane B2 (100% group) and matrix metalloproteinase-2 levels (21% and 100% groups) (versus respective baseline, P < 0.05), with no difference between experimental groups. These findings suggest transient platelet activation in hypoxic newborn piglets resuscitated with 100% but not with 18% and 21% oxygen, of which the clinical significance requires further investigation.


Assuntos
Plaquetas/metabolismo , Hipóxia/sangue , Oxigênio/sangue , Suínos/sangue , Animais , Animais Recém-Nascidos , Agregação Celular/fisiologia
19.
Shock ; 28(4): 484-90, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17577140

RESUMO

Neonatal asphyxia may lead to cardiac and renal complications perhaps mediated by oxygen free radicals. Using a model of neonatal hypoxia-reoxygenation, we tested the hypothesis that N-acetylcysteine (NAC) would improve cardiac function and renal blood flow. Eighteen piglets (aged 1-4 days old, weighing 1.4-2.2 kg) were anesthetized and acutely instrumented for continuous monitoring of pulmonary and renal artery flow (cardiac index [CI] and renal artery flow index [RAFI], respectively) and mean blood pressure. Alveolar hypoxia was induced for 2 h, followed by resuscitation with 100% oxygen for 1 h and 21% oxygen for 3 h. Animals were randomized to sham-operated, hypoxic control, and NAC treatment (i.v. bolus of 150 mg/kg given at 10 min of reoxygenation followed by 100 mg/kg per h infusion) groups. Myocardial and renal tissue glutathione content and lipid hydroperoxide levels were assayed, and histology was examined. After 2 h of hypoxia, all animals were acidotic (pH 6.96 +/- 0.04) and in cardiogenic shock with depressed renal blood flow. Upon reoxygenation, CI and RAFI increased but gradually deteriorated later. The NAC treatment prevented the decreased CI, stroke volume, mean blood pressure, systemic oxygen delivery, RAFI, and renal oxygen delivery at 2 to 4 h of reoxygenation observed in hypoxic controls (versus shams, all P < 0.05). The myocardial and renal tissue glutathione content was significantly higher in the NAC treatment group (versus controls). The CI and RAFI at 4 h of reoxygenation correlated with the tissue glutathione redox ratio (r = 0.5 and 0.6, respectively, P < 0.05). There were no significant differences in heart rate, pulmonary artery pressure, systemic oxygen uptake, and tissue lipid hydroperoxide levels between groups. No histologic injury was found in the heart or kidney. In this porcine model of neonatal hypoxia and 100% reoxygenation, NAC improved cardiac function and renal perfusion, with improved tissue glutathione content.


Assuntos
Acetilcisteína/farmacologia , Hipóxia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/farmacologia , Acetilcisteína/uso terapêutico , Animais , Animais Recém-Nascidos , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Hipóxia/fisiopatologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Miocárdio/metabolismo , Oxigênio/metabolismo , Oxigênio/uso terapêutico , Oxigenoterapia/métodos , Volume Sistólico/efeitos dos fármacos , Suínos , Fatores de Tempo
20.
Eur J Pharmacol ; 544(1-3): 168-73, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16859674

RESUMO

The inhibitory effect of different sulfur compounds and antioxidants at the activity level of matrix metalloproteinase (MMP)-2 and -9 during neonatal hypoxia-reoxygenation is unknown. The tissue activity of MMP-2 and -9 was first determined by gelatin zymography in different tissues of 6 newborn piglets that underwent alveolar hypoxia and reoxygenation. The in vitro inhibitory effects of sulfur compounds and antioxidants with or without the thiol group were compared at the highest concentrations of MMP-2 and -9 found. These compounds included: amino acids containing sulfur [cysteine, DL-homocysteine, L-methionine] and not containing sulfur [L-histidine], antioxidants containing sulfur [L-glutathione and N-acetyl-cysteine] and not containing sulfur [ascorbic acid], and oxidized glutathione. Lung had the highest activity of MMP-2 and -9 among the tissues studied. The compounds showed differential effects on the activity of MMP-2 and -9. The order of the potency of inhibition of these compounds for MMP-2 was cysteine> or =histidine> or =ascorbic acid> or =glutathione> or =oxidized glutathione> or =homocysteine> or =N-acetyl-cysteine>methionine, whereas for MMP-9, it was cysteine> or =ascorbic acid> or =histidine>glutathione>homocysteine>N-acetyl-cysteine>oxidized glutathione>methionine. The IC50 values of these compounds on MMP-2 were significantly lower than the corresponding IC50 values on MMP-9. In conclusions, at the activity level of MMP-2 and -9 measured after neonatal hypoxia-reoxygenation, cysteine showed the highest potency of inhibition. The compounds showed different potencies of inhibition, regardless of the presence or absence of the thiol group or the antioxidant property of the compound.


Assuntos
Antioxidantes/metabolismo , Hipóxia/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Traumatismo por Reperfusão/metabolismo , Compostos de Enxofre/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Ativação Enzimática , Ventrículos do Coração/metabolismo , Concentração Inibidora 50 , Fígado/metabolismo , Pulmão/metabolismo , Oxigênio/metabolismo , Proteínas Recombinantes/química , Compostos de Enxofre/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA