RESUMO
Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States, with few effective treatments available and only 10% of those diagnosed surviving 5 years. Although immunotherapeutics is a growing field of study in cancer biology, there has been little progress in its use for the treatment of pancreatic cancer. Pancreatic cancer is considered a nonimmunogenic tumor because the tumor microenvironment does not easily allow for the immune system, even when stimulated, to attack the cancer. Infection with the protozoan parasite Toxoplasma gondii has been shown to enhance the immune response to clear cancer tumors. A subset of T. gondii proteins called soluble Toxoplasma antigen (STAg) contains an immunodominant protein called profilin. Both STAg and profilin have been shown to stimulate an immune response that reduces viral, bacterial, and parasitic burdens. Here, we use STAg and profilin to treat pancreatic cancer in a KPC mouse-derived allograft murine model. These mice exhibit pancreatic cancer with both Kras and P53 mutations as subcutaneous tumors. Pancreatic cancer tumors in C57BL/6J mice with a wild-type background showed a significant response to treatment with either profilin or STAg, exhibiting a decrease in tumor volume accompanied by an influx of CD4+ and CD8+ T cells into the tumors. Both IFN-γ-/- mice and Batf3-/- mice, which lack conventional dendritic cells, failed to show significant decreases in tumor volumes when treated. These results indicate that gamma interferon (IFN-γ) and dendritic cells may play critical roles in the immune response necessary to treat pancreatic cancer.
Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Protozoários/farmacologia , Toxoplasma , Aloenxertos , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Proteínas de Protozoários/imunologia , Toxoplasma/química , Toxoplasma/metabolismoRESUMO
OPINION STATEMENT: Though many advancements in personalized medicine have been made, better methods are still needed to predict treatment benefit for patients with colorectal cancer. Patient-derived cancer organoids (PDCOs) are a major advance towards true personalization of treatment strategies. A growing body of literature is demonstrating the feasibility of PDCOs as an accurate and high-throughput preclinical tool for patient treatment selection. Many studies demonstrate that these cultures are readily generated and represent the tumors they were derived from phenotypically and based on their mutation profile. This includes maintenance of the driver muatations giving the cancer cells a selective growth advantage, and also heterogeneity, including molecular and metabolic heterogeneity. Additionally, PDCOs are now being utilized to develop patient biospecimen repositories, perform high to moderate-throughput drug screening, and to potentially predict treatment response for individual patients that are undergoing anti-cancer treatments. In order to develop PDCOs as a true clinical tool, further studies are required to determine the reproducibility and accuracy of these models to predict patient response.
Assuntos
Antineoplásicos/farmacologia , Colo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Organoides/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Técnicas de Cultura de Células , DNA Tumoral Circulante , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Humanos , Cultura Primária de Células , Esferoides Celulares , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacosRESUMO
Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Células Dendríticas/imunologia , Matriz Extracelular/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Versicanas/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Proteínas Repressoras/metabolismo , Microambiente TumoralRESUMO
In colorectal cancer (CRC), attempts to identify cancer cell-specific markers to guide antibody-mediated therapeutics have failed to uncover markers that are both exclusive to cancer tissues and abundant across CRCs. Alternatively, cancer-associated fibroblasts (CAFs), which are abundant in the tumor microenvironment and upregulate unique surface markers, are not found in healthy tissues. Here, we evaluated the expression patterns of CAF-associated proteins α-smooth muscle actin (αSMA), fibroblast activation protein (FAP), podoplanin (PDPN), matrix metalloproteinase-2 (MMP2), transgelin (TAGLN), and THY1. While αSMA and THY1 were abundant in cancer tissues, high abundance in normal tissues limited their targeting potential. FAP was present in 94.5% of primary and metastatic CRC tissues and absent in 93.7% of adjacent normal colon and liver tissues assessed. These results indicate that FAP is a promising target for antibody conjugates with potential for broad application in CRC. Co-expression analyses showed that CRCs simultaneously expressing high levels of PDPN, MMP2, and THY1 were enriched for immune-related signatures, indicating potential for antibody-mediated immune engagers. Overall, this work highlights the potential of CAF proteins to act as therapeutic targets for novel anticancer agents and become important therapeutic biomarkers.
RESUMO
PURPOSE OF REVIEW: Treatment options for patients with metastatic colorectal cancer continue to advance as the therapeutic implications of the molecular subtypes of this disease are becoming better understood. DNA sequencing and mismatch repair assessment are now standard of care analyses for patients with metastatic colorectal cancer Thi review describes important aspects of the biology of the clinically relevant molecular subtypes of colorectal cancer based on the current standard of care testing. In addition, the clinical treatment strategies available now and potentially in the future for these colorectal cancer subtypes are discussed. RECENT FINDINGS: Currently for metastatic colorectal cancer, standard of care molecular testing is done for mutations in exons 2, 3, and 4 of KRAS and NRAS, and BRAF V600E. Testing for mismatch repair (MMR) deficiency/microsatellite instability (MSI) status is also done. These aberrations are well known to change the clinical prognosis and guide patients' treatment strategies. Additionally, three new subtypes have emerged: PIK3CAmut, HER2 amplified, and NTRK fusions. With the addition of these emerging subtypes, tumor heterogeneity further validates the need to examine mCRC as a heterogeneous disease. Here we present recent exciting data from translational research and clinical trials exhibiting possible distinct treatment strategies for these different subtypes. SUMMARY: Altogether these data show promising treatment strategies for many of these well-known and emerging subtypes of mCRC. In addition, these also give better clinical prognostic and predictive information. We believe that as molecular testing expands PIK3CA mutation, HER2 amplification, and NTRK fusion molecular testing will be included in standard of care analyses. This incorporation of testing in clinical practice will generate further information regarding prognostic and therapeutic options for these and other CRC subtypes in the future.
RESUMO
PURPOSE: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed. EXPERIMENTAL DESIGN: Patient-derived cancer organoids were derived across multiple histologies. The histologic characteristics, mutation profile, clonal structure, and response to chemotherapy and radiation were assessed using bright-field and optical metabolic imaging on spheroid and single-cell levels, respectively. RESULTS: We demonstrate that patient-derived cancer organoids represent the cancers from which they were derived, including key histologic and molecular features. These cultures were generated from numerous cancers, various biopsy sample types, and in different clinical settings. Next-generation sequencing reveals the presence of subclonal populations within the organoid cultures. These cultures allow for the detection of clonal heterogeneity with a greater sensitivity than bulk tumor sequencing. Optical metabolic imaging of these organoids provides cell-level quantification of treatment response and tumor heterogeneity allowing for resolution of therapeutic differences between patient samples. Using this technology, we prospectively predict treatment response for a patient with metastatic colorectal cancer. CONCLUSIONS: These studies add to the literature demonstrating feasibility to grow clinical patient-derived organotypic cultures for treatment effectiveness testing. Together, these culture methods and response assessment techniques hold great promise to predict treatment sensitivity for patients with cancer undergoing chemotherapy and/or radiation.