RESUMO
Clear cell renal cell carcinoma (ccRCC) is an immunologically vulnerable tumor entity, and immune checkpoint inhibitors are now widely used to treat patients with advanced disease. Whether and to what extent immune responses in ccRCC are shaped by genetic alterations, however, is only beginning to emerge. In this proof-of-concept study, we performed a detailed correlative analysis of the mutational and immunological landscapes in a series of 23 consecutive kidney cancer patients. We discovered that a high infiltration with CD8 + T cells was not dependent on the number of driver mutations but rather on the presence of specific mutational events, namely pathogenic mutations in PTEN or BAP1. This observation encouraged us to compare mechanisms of T cell suppression in the context of four different genetic patterns, i.e., the presence of multiple drivers, a PTEN or BAP1 mutation, or the absence of detectable driver mutations. We found that ccRCCs harboring a PTEN or BAP1 mutation showed the lowest level of Granzyme B positive tumor-infiltrating lymphocytes (TILs). A multiplex immunofluorescence analysis revealed a significant number of CD8 + TILs in the vicinity of CD68 + macrophages/monocytes in the context of a BAP1 mutation but not in the context of a PTEN mutation. In line with this finding, direct interactions between CD8 + TILs and CD163 + M2-polarized macrophages were found in BAP1-mutated ccRCC but not in tumors with other mutational patterns. While an absence of driver mutations was associated with more CD8 + TILs in the vicinity of FOXP3 + Tregs and CD68 + monocytes/macrophages, the presence of multiple driver mutations was, to our surprise, not found to be strongly associated with immunosuppressive mechanisms. Our results highlight the role of genetic alterations in shaping the immunological landscape of ccRCC. We discovered a remarkable heterogeneity of mechanisms that can lead to T cell suppression, which supports the need for personalized immune oncological approaches.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA/genética , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Mutação , Prognóstico , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , PTEN Fosfo-Hidrolase/genéticaRESUMO
INTRODUCTION: Chromosomal aberrations are known to drive metastatic spread, but their profile is still elusive in carcinoma of unknown primary (CUP). Therefore, the aim of this study was to characterize the chromosomal aberration pattern in CUP depending on histological and clinical features and to assess its prognostic impact together with chromothripsis, tumor mutational burden (TMB), microsatellite instability (MSI), and mutational profiles as potential prognostic biomarkers. METHODS: Chromosomal aberrations and chromothripsis were detected by methylation-based copy number variation (CNV) analysis, whereas TMB and MSI were calculated based on large next-generation sequencing (NGS) panels. Putative primaries were assigned by consensus between two independent oncologists. RESULTS: CNV losses varied depending on putative primaries and were more abundant in patients harboring TP53 mutations and/or deletions 17p. CNV loss was prognostically adverse in localized CUP treated with surgery and/or radiotherapy, but not in disseminated poor-risk CUP treated with palliative chemotherapy. CNV loss also worsened the prognosis in squamous cell CUP. Chromothripsis was detected in 18/59 (30.5%) patients without prognostic effect. TMB was highest in cases with MSI, squamous cell histology, and with lung, anal or cervical putative primaries. CONCLUSION: Overall, CNV, chromothripsis, TMB, and MSI profiles in CUP are reminiscent of biological characteristics known from other cancer entities without a unifying CUP-specific signature. Markedly, high-level CNV loss is an adverse predictive biomarker in localized but not disseminated chemotherapy-treated CUP. This implies that chromosomal losses drive CUP progression, but also increase susceptibility to chemotherapy, with both effects apparently leveling out in disseminated CUP.
Assuntos
Carcinoma , Cromotripsia , Neoplasias Primárias Desconhecidas , Biomarcadores Tumorais/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Humanos , Instabilidade de Microssatélites , Mutação , Neoplasias Primárias Desconhecidas/genética , PrognósticoRESUMO
Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations. Finally, we highlight the significance of the molecular tumor board as a platform for clinical decision-making based on genomic analyses.
Assuntos
Neoplasias , Medicina de Precisão , Biologia Computacional , Genômica , Humanos , Neoplasias/genéticaRESUMO
BACKGROUND: Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10-15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. METHODS: A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. RESULTS: Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. CONCLUSION: This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Genômica , Humanos , Técnicas de Diagnóstico Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genéticaRESUMO
Pancreatic cysts or dilated pancreatic ducts are often found by cross-sectional imaging, but only mucinous lesions can become malignant. Therefore, distinction between mucinous and non-mucinous lesions is crucial for adequate patient management. We performed a prospective study including targeted next generation sequencing (NGS) of cell-free DNA in the diagnostic endoscopic ultrasound (EUS)-guided workup. Pancreatic cyst(s) or main duct fluid obtained by EUS-guided FNA was analysed by carcinoembryonic antigen (CEA), cytology and deep targeted NGS of 14 known gastrointestinal cancer genes (AKT1, BRAF, CTNNB1, EGFR, ERBB2, FBXW7, GNAS, KRAS, MAP2K1, NRAS, PIK3CA, SMAD4, TP53, APC) with a limit of detection down to variant allele frequency of 0.01%. Results were correlated to histopathology and clinical follow-up. One hundred and thirteen patients with pancreatic cyst(s) and/or a dilated pancreatic main duct (≥5 mm) were screened. Sixty-six patients had to be excluded, mainly due to inoperability or small cyst size (≤10 mm). Forty-seven patients were enrolled for further analysis. A final diagnosis was available in 27 cases including 8 negative controls. In 43/47 (91.5%) of patients a KRAS- and/or GNAS-mutation was diagnosed by NGS. 27.0% of the KRAS-mutated and 10.0% of the GNAS-mutated lesions harbored multiple mutations. KRAS/GNAS-testing by NGS, cytology, and CEA had a sensitivity and specificity of 94.7/100%, 38.1/100%, and 42.1/75.0%, respectively. KRAS/GNAS-testing was significantly superior to CEA (P = .0209) and cytology (P = .0016). In conclusion, KRAS/GNAS-testing by deep targeted NGS is a suitable method to distinguish mucinous from non-mucinous pancreatic lesions, suggesting its usage as a single diagnostic test. Results must be confirmed in a larger cohort.
Assuntos
Cromograninas/genética , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Císticas, Mucinosas e Serosas/genética , Cisto Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Idoso , Idoso de 80 Anos ou mais , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/normas , Feminino , Testes Genéticos/métodos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Císticas, Mucinosas e Serosas/diagnóstico por imagem , Neoplasias Císticas, Mucinosas e Serosas/patologia , Cisto Pancreático/diagnóstico por imagem , Cisto Pancreático/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normasRESUMO
BACKGROUND & AIMS: Lynch syndrome is caused by variants in DNA mismatch repair (MMR) genes and associated with an increased risk of colorectal cancer (CRC). In patients with Lynch syndrome, CRCs can develop via different pathways. We studied associations between Lynch syndrome-associated variants in MMR genes and risks of adenoma and CRC and somatic mutations in APC and CTNNB1 in tumors in an international cohort of patients. METHODS: We combined clinical and molecular data from 3 studies. We obtained clinical data from 2747 patients with Lynch syndrome associated with variants in MLH1, MSH2, or MSH6 from Germany, the Netherlands, and Finland who received at least 2 surveillance colonoscopies and were followed for a median time of 7.8 years for development of adenomas or CRC. We performed DNA sequence analyses of 48 colorectal tumors (from 16 patients with mutations in MLH1, 29 patients with mutations in MSH2, and 3 with mutations in MSH6) for somatic mutations in APC and CTNNB1. RESULTS: Risk of advanced adenoma in 10 years was 17.8% in patients with pathogenic variants in MSH2 vs 7.7% in MLH1 (P < .001). Higher proportions of patients with pathogenic variants in MLH1 or MSH2 developed CRC in 10 years (11.3% and 11.4%) than patients with pathogenic variants in MSH6 (4.7%) (P = .001 and P = .003 for MLH1 and MSH2 vs MSH6, respectively). Somatic mutations in APC were found in 75% of tumors from patients with pathogenic variants in MSH2 vs 11% in MLH1 (P = .015). Somatic mutations in CTNNB1 were found in 50% of tumors from patients with pathogenic variants in MLH1 vs 7% in MSH2 (P = .002). None of the 3 tumors with pathogenic variants in MSH6 had a mutation in CTNNB1, but all had mutations in APC. CONCLUSIONS: In an analysis of clinical and DNA sequence data from patients with Lynch syndrome from 3 countries, we associated pathogenic variants in MMR genes with risk of adenoma and CRC, and somatic mutations in APC and CTNNB1 in colorectal tumors. If these findings are confirmed, surveillance guidelines might be adjusted based on MMR gene variants.
Assuntos
Adenoma/epidemiologia , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Adenoma/diagnóstico , Adenoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Adulto , Colonoscopia , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Feminino , Finlândia/epidemiologia , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Países Baixos/epidemiologia , Estudos Prospectivos , beta Catenina/genéticaRESUMO
BACKGROUND AND AIMS: Lifetime risk of biliary tract cancer (BTC) in primary sclerosing cholangitis (PSC) may exceed 20%, and BTC is currently the leading cause of death in patients with PSC. To open new avenues for management, we aimed to delineate clinically relevant genomic and pathological features of a large panel of PSC-associated BTC (PSC-BTC). APPROACH AND RESULTS: We analyzed formalin-fixed, paraffin-embedded tumor tissue from 186 patients with PSC-BTC from 11 centers in eight countries with all anatomical locations included. We performed tumor DNA sequencing at 42 clinically relevant genetic loci to detect mutations, translocations, and copy number variations, along with histomorphological and immunohistochemical characterization. Regardless of the anatomical localization, PSC-BTC exhibited a uniform molecular and histological characteristic similar to extrahepatic cholangiocarcinoma. We detected a high frequency of genomic alterations typical of extrahepatic cholangiocarcinoma, such as TP53 (35.5%), KRAS (28.0%), CDKN2A (14.5%), and SMAD4 (11.3%), as well as potentially druggable mutations (e.g., HER2/ERBB2). We found a high frequency of nontypical/nonductal histomorphological subtypes (55.2%) and of the usually rare BTC precursor lesion, intraductal papillary neoplasia (18.3%). CONCLUSIONS: Genomic alterations in PSC-BTC include a significant number of putative actionable therapeutic targets. Notably, PSC-BTC shows a distinct extrahepatic morpho-molecular phenotype, independent of the anatomical location of the tumor. These findings advance our understanding of PSC-associated cholangiocarcinogenesis and provide strong incentives for clinical trials to test genome-based personalized treatment strategies in PSC-BTC.
Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Colangite Esclerosante/complicações , Adolescente , Adulto , Idoso , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Criança , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Genes p53 , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto JovemRESUMO
Increasingly extensive genomic diagnostics in cancer precision medicine require uniform evaluation criteria for the classification of variants with regard to their functional and therapeutic implications. In this review we present the most important guidelines and classification systems currently used in daily clinical practice, explain their advantages and disadvantages as well as differences and similarities, and present the step-by-step, systematic process that enables successful variant interpretation.
Assuntos
Neoplasias , Patologia Molecular , Genômica , Humanos , Oncologia , Mutação , Medicina de PrecisãoRESUMO
Gene fusions involving the three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, or NTRK3 were identified as oncogenic drivers in many cancer types. Two small molecule inhibitors have been tested in clinical trials recently and require the detection of a NTRK fusion gene prior to therapeutic application. Fluorescence in situ hybridization (FISH) and targeted next-generation sequencing (tNGS) assays are commonly used for diagnostic profiling of gene fusions. In the presented study we applied an external quality assessment (EQA) scheme in order to investigate the suitability of FISH and RNA-/DNA-based tNGS for detection of NTRK fusions in a multinational and multicentric ring trial. In total 27 participants registered for this study. Nine institutions took part in the FISH-based and 18 in the NGS-based round robin test, the latter additionally subdivided into low-input and high-input NGS methods (regarding nucleic acid input). Regardless of the testing method applied, all participants received tumor sections of 10 formalin-fixed and paraffin-embedded (FFPE) tissue blocks for in situ hybridization or RNA/DNA extraction, and the results were submitted via an online questionnaire. For FISH testing, eight of nine (88.8%) participants, and for NGS-based testing 15 of 18 (83.3%) participants accomplished the round robin test successfully. The overall high success rate demonstrates that FISH- and tNGS-based NTRK testing can be well established in a routine diagnostic setting. Complementing this dataset, we provide an updated in silico analysis on the coverage of more than 150 NTRK fusion variants by several commercially available RNA-based tNGS panels.
Assuntos
Biomarcadores Tumorais/genética , Testes Genéticos/métodos , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , RNA-Seq/métodos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Testes Genéticos/normas , Humanos , Hibridização in Situ Fluorescente/métodos , Neoplasias/diagnóstico , RNA-Seq/normas , Sensibilidade e Especificidade , Preservação de Tecido/métodosRESUMO
Inflammatory gene signatures are currently being explored as predictive biomarkers for immune checkpoint blockade, and particularly for the treatment of renal cell cancers. From a diagnostic point of view, the nCounter analysis platform and targeted RNA sequencing are emerging alternatives to microarrays and comprehensive transcriptome sequencing in assessing formalin-fixed and paraffin-embedded (FFPE) cancer samples. So far, no systematic study has analyzed and compared the technical performance metrics of these two approaches. Filling this gap, we performed a head-to-head comparison of two commercially available immune gene expression assays, using clear cell renal cell cancer FFPE specimens. We compared the nCounter system that utilizes a direct hybridization technology without amplification with an NGS assay that is based on targeted RNA-sequencing with preamplification. We found that both platforms displayed high technical reproducibility and accuracy (Pearson coefficient: ≥0.96, concordance correlation coefficient [CCC]: ≥0.93). A density plot for normalized expression of shared genes on both platforms showed a comparable bi-modal distribution and dynamic range. RNA-Seq demonstrated relatively larger signaling intensity whereas the nCounter system displayed higher inter-sample variability. Estimated fold changes for all shared genes showed high correlation (Spearman coefficient: 0.73). This agreement is even better when only significantly differentially expressed genes were compared. Composite gene expression profiles, such as an interferon gamma (IFNg) signature, can be reliably inferred by both assays. In summary, our study demonstrates that focused transcript read-outs can reliably be achieved by both technologies and that both approaches achieve comparable results despite their intrinsic technical differences.
Assuntos
Carcinoma de Células Renais/genética , Proteínas de Checkpoint Imunológico/genética , Neoplasias Renais/genética , Inclusão em Parafina/métodos , RNA-Seq/métodos , Fixação de Tecidos/métodos , Carcinoma de Células Renais/imunologia , Formaldeído , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias Renais/imunologia , Inclusão em Parafina/normas , RNA-Seq/normas , Fixação de Tecidos/normas , TranscriptomaRESUMO
NTRK fusions involving three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, and NTRK3 and a variety of fusion partners were identified as oncogenic drivers across many cancer types. Drugs that target the chimeric protein product require the identification of the underlying gene fusion. This advocates the diagnostic use of molecular assays ranging from fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR)/Sanger approaches to targeted next-generation sequencing (NGS). Immunohistochemistry may be used as a screening tool and adjunct diagnostic assay in this context. Although FISH and RT-PCR/Sanger approaches are widely adopted in routine diagnostics, current experience with targeted RNA-based NGS is limited. Here, we report on the analysis of major assays (TruSight TST170 and TruSight RNA Fusion [Illumina]; Archer FusionPlex Solid Tumor, Archer FusionPlex Lung, and Archer FusionPlex Oncology [Archer]; Oncomine Comprehensive Assay v3 RNA and Oncomine Focus RNA [Thermo Fisher Scientific]) that are commercially available. The data set includes performance results of a multicentric comparative wet-lab study as well as an in silico analysis on the ability to detect the broad range of NTRK fusions reported until now. A test algorithm that reflects assay methodology is provided. This data will support implementation of targeted RNA sequencing in routine diagnostics and inform screening and testing strategies that have been brought forward.
Assuntos
Biomarcadores Tumorais , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Fator de Crescimento Neural/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Tomada de Decisão Clínica , Gerenciamento Clínico , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Lactente , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Reprodutibilidade dos Testes , Fluxo de Trabalho , Adulto JovemRESUMO
Cancer of unknown primary (CUP) denotes a malignancy with histologically confirmed metastatic spread while the primary tumor remains elusive. Here, we address prognostic and therapeutic implications of mutations and copy number variations (CNVs) detected in tumor tissue in the context of a comprehensive clinical risk assessment. Targeted panel sequencing was performed in 252 CUP patients. 71.8% of patients had unfavorable CUP according to ESMO guidelines. 74.7% were adeno- and 13.7% squamous cell carcinomas. DNA was extracted from microdissected formalin-fixed, paraffin-embedded tissues. For library preparation, mostly multiplex PCR-based Ion Torrent AmpliSeq™ technology with Oncomine comprehensive assays was used. Most frequent genetic alterations were mutations/deletions of TP53 (49.6%), CDKN2A (19.0%) and NOTCH1 (14.1%) as well as oncogenic activation of KRAS (23.4%), FGFR4 (14.9%) and PIK3CA (10.7%). KRAS activation was predominantly found in adenocarcinomas (p = 0.01), PIK3CA activation in squamous cell carcinomas (p = 0.03). Male sex, high ECOG score, unfavorable CUP, higher number of involved organs and RAS activation predicted decreased event-free and overall survival in multivariate analysis. Deletions of CDKN2A were prognostically adverse regarding overall survival. TP53 mutations did not significantly influence prognosis in the overall cohort, but worsened prognosis in otherwise favorable CUP subtypes. Although not standard in CUP, for 17/198 (8.6%) patients molecularly targeted treatment was recommended and 10 patients (5.1%) were treated accordingly. In conclusion, besides the identification of drug targets, panel sequencing in CUP is prognostically relevant, with RAS activation and CDKN2A deletion emerging as novel independent risk factors in a comprehensive assessment with clinicopathological data.
Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Primárias Desconhecidas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/patologia , Adolescente , Adulto , Carcinoma de Células Escamosas/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Variações do Número de Cópias de DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias Primárias Desconhecidas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética , Adulto JovemRESUMO
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer. It is defined by cholangiocytic differentiation and has poor prognosis. Recently, epigenetic processes have been shown to play an important role in cholangiocarcinogenesis. We performed an integrative analysis on 52 iCCAs using both genetic and epigenetic data with a specific focus on DNA methylation components. We found recurrent isocitrate dehydrogenase 1 (IDH1) and IDH2 (28%) gene mutations, recurrent arm-length copy number alterations (CNAs), and focal alterations such as deletion of 3p21 or amplification of 12q15, which affect BRCA1 Associated Protein 1, polybromo 1, and mouse double minute 2 homolog. DNA methylome analysis revealed excessive hypermethylation of iCCA, affecting primarily the bivalent genomic regions marked with both active and repressive histone modifications. Integrative clustering of genetic and epigenetic data identified four iCCA subgroups with prognostic relevance further designated as IDH, high (H), medium (M), and low (L) alteration groups. The IDH group consisted of all samples with IDH1 or IDH2 mutations and showed, together with the H group, a highly disrupted genome, characterized by frequent deletions of chromosome arms 3p and 6q. Both groups showed excessive hypermethylation with distinct patterns. The M group showed intermediate characteristics regarding both genetic and epigenetic marks, whereas the L group exhibited few methylation changes and mutations and a lack of CNAs. Methylation-based latent component analysis of cell-type composition identified differences among these four groups. Prognosis of the H and M groups was significantly worse than that of the L group. Conclusion: Using an integrative genomic and epigenomic analysis approach, we identified four major iCCA subgroups with widespread genomic and epigenomic differences and prognostic implications. Furthermore, our data suggest differences in the cell-of-origin of the iCCA subtypes.
Assuntos
Neoplasias dos Ductos Biliares/classificação , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/classificação , Colangiocarcinoma/genética , Metilação de DNA , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/diagnóstico , Colangiocarcinoma/diagnóstico , Feminino , Genes p53 , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , PrognósticoRESUMO
An amendment to this paper has been published and can be accessed via the original article.
RESUMO
BACKGROUND: ß-catenin activation plays a crucial role for tumourigenesis in the large intestine but except for Lynch syndrome (LS) associated cancers stabilizing mutations of ß-catenin gene (CTNNB1) are rare in colorectal cancer (CRC). Previous animal studies provide an explanation for this observation. They showed that CTNNB1 mutations induced transformation in the colon only when CTNNB1 was homozygously mutated or when membranous ß-catenin binding was hampered by E-cadherin haploinsufficiency. We were interested, if these mechanisms are also found in human CTNNB1 mutated CRCs. RESULTS: Among 869 CRCs stabilizing CTNNB1 mutations were found in 27 cases. Homo- or hemizygous CTNNB1 mutations were detected in 74% of CTNNB1 mutated CRCs (13 microsatellite instabile (MSI-H), 7 microsatellite stabile (MSS)) but only in 3% (1/33) of extracolonic CTNNB1 mutated cancers. In contrast to MSS CRC, CTNNB1 mutations at codon 41 or 45 were highly selected in MSI-H CRC. Of the examined three CRC cell lines, ß-catenin and E-cadherin expression was similar in cell lines without or with hetereozygous CTNNB1 mutations (DLD1 and HCT116), while a reduced E-cadherin expression combined with cytoplasmic accumulation of ß-catenin was found in a cell line with homozygous CTNNB1 mutation (LS180). Reduced expression of E-cadherin in human MSI-H CRC tissue was identified in 60% of investigated cancers, but no association with the CTNNB1 mutational status was found. CONCLUSIONS: In conclusion, this study shows that in contrast to extracolonic cancers stabilizing CTNNB1 mutations in CRC are commonly homo- or hemizygous indicating a higher threshold of ß-catenin stabilization to be required for transformation in the colon as compared to extracolonic sites. Moreover, we found different mutational hotspots in CTNNB1 for MSI-H and MSS CRCs suggesting a selection of different effects on ß-catenin stabilization according to the molecular pathway of tumourigenesis. Reduced E-cadherin expression in CRC may further contribute to higher levels of transcriptionally active ß-catenin, but it is not directly linked to the CTNNB1 mutational status.
Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/genética , Caderinas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Homozigoto , Mutação , beta Catenina/genética , Antígenos CD/genética , Caderinas/genética , Neoplasias Colorretais/metabolismo , Humanos , Instabilidade de Microssatélites , PrognósticoRESUMO
The interpatient variability of tumor proteomes has been investigated on a large scale but many tumors display also intratumoral heterogeneity regarding morphological and genetic features. It remains largely unknown to what extent the local proteome of tumors intrinsically differs. Here, we used hepatocellular carcinoma as a model system to quantify both inter- and intratumor heterogeneity across human patient specimens with spatial resolution. We defined proteomic features that distinguish neoplastic from the directly adjacent nonneoplastic tissue, such as decreased abundance of NADH dehydrogenase complex I. We then demonstrated the existence of intratumoral variations in protein abundance that re-occur across different patient samples, and affect clinically relevant proteins, even in the absence of obvious morphological differences or genetic alterations. Our work demonstrates the suitability and the benefits of using mass spectrometry-based proteomics to analyze diagnostic tumor specimens with spatial resolution. Data are available via ProteomeXchange with identifier PXD007052.
Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , ProteômicaRESUMO
Approximately half of all pancreatic cysts are neoplastic, mainly comprising intraductal papillary mucinous neoplasms (IPMN), which can progress to invasive carcinoma. Current Fukuoka guidelines have limited sensitivity and specificity in predicting progression of asymptomatic pancreatic cysts. We present first results of the prospective ZYSTEUS biomarker study investigating (i) whether detection of driver mutations in IPMN by liquid biopsy is technically feasible, (ii) which compartment of IPMN is most suitable for analysis, and (iii) implications for clinical diagnostics. Twenty-two patients with clinical inclusion criteria were enrolled in ZYSTEUS. Fifteen cases underwent endoscopic ultrasound (EUS)-guided fine-needle aspiration and cytological diagnostics. Cellular and liquid fraction of the cysts of each case were separated and subjected to deep targeted next generation sequencing (NGS). Clinical parameters, imaging findings (EUS and MRI), and follow-up data were collected continuously. All IPMN cases (n = 12) showed at least one mutation in either KRAS (n = 11) or GNAS (n = 4). Three cases showed both KRAS and GNAS mutations. Six cases harbored multiple KRAS/GNAS mutations. In the three cases with pseudocysts, no KRAS or GNAS mutations were detected. DNA yields were higher and showed higher mutation diversity in the cellular fraction. In conclusion, mutation detection in pancreatic cyst fluid is technically feasible with more robust results in the cellular than in the liquid fraction. Current results suggest that, together with imaging, targeted sequencing supports discrimination of IPMN from pseudocysts. The prospective design of ZYSTEUS will provide insight into diagnostic value of NGS in preoperative risk stratification. Our data provide evidence for an oligoclonal nature of IPMN.
Assuntos
Biópsia por Agulha Fina , Cisto Pancreático/diagnóstico , Neoplasias Intraductais Pancreáticas/diagnóstico , Pseudocisto Pancreático/diagnóstico , Idoso , Biomarcadores Tumorais/genética , Cromograninas/genética , Líquido Cístico/metabolismo , Diagnóstico Diferencial , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Intraductais Pancreáticas/patologia , Pseudocisto Pancreático/patologia , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , UltrassonografiaRESUMO
OBJECTIVE: We aimed at the identification of genetic alterations that may functionally substitute for CTNNB1 mutation in ß-catenin-activated hepatocellular adenomas (HCAs) and hepatocellular carcinoma (HCC). DESIGN: Large cohorts of HCA (n=185) and HCC (n=468) were classified using immunohistochemistry. The mutational status of the CTNNB1 gene was determined in ß-catenin-activated HCA (b-HCA) and HCC with at least moderate nuclear CTNNB1 accumulation. Ultra-deep sequencing was used to characterise CTNNB1wild-type and ß-catenin-activated HCA and HCC. Expression profiling of HCA subtypes was performed. RESULTS: A roof plate-specific spondin 2 (RSPO2) gene rearrangement resulting from a 46.4 kb microdeletion on chromosome 8q23.1 was detected as a new morphomolecular driver of ß-catenin-activated HCA. RSPO2 fusion positive HCA displayed upregulation of RSPO2 protein, nuclear accumulation of ß-catenin and transcriptional activation of ß-catenin-target genes indicating activation of Wingless-Type MMTV Integration Site Family (WNT) signalling. Architectural and cytological atypia as well as interstitial invasion indicated malignant transformation in one of the RSPO2 rearranged b-HCAs. The RSPO2 gene rearrangement was also observed in three ß-catenin-activated HCCs developing in context of chronic liver disease. Mutations of the human telomerase reverse transcriptase promoter-known to drive malignant transformation of CTNNB1-mutated HCA-seem to be dispensable for RSPO2 rearranged HCA and HCC. CONCLUSION: The RSPO2 gene rearrangement leads to oncogenic activation of the WNT signalling pathway in HCA and HCC, represents an alternative mechanism for the development of b-HCA and may drive malignant transformation without additional TERT promoter mutation.
Assuntos
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Rearranjo Gênico/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/genética , beta Catenina/genética , Adenoma de Células Hepáticas/patologia , Adolescente , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Criança , Estudos de Coortes , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Lung adenocarcinoma (ADC) is the most prevalent subtype of lung cancer and characterized by considerable morphological and mutational heterogeneity. However, little is known about the epigenomic intratumor variability between spatially separated histological growth patterns of ADC. In order to reconstruct the clonal evolution of histomorphological patterns, we performed global DNA methylation profiling of 27 primary tumor regions, seven matched normal tissues and six lymph node metastases from seven ADC cases. Additionally, we investigated the methylation data from 369 samples of the TCGA ADC cohort. All regions showed varying degrees of methylation changes between segments of different, but also of the same growth patterns. Similarly, copy number variations were seen between spatially distinct segments of each patient. Hierarchical clustering of promoter methylation revealed extensive heterogeneity within and between the cases. Intratumor DNA methylation heterogeneity demonstrated a branched clonal evolution of ADC regions driven by genomic instability with subclonal copy number changes. Notably, methylation profiles within tumors were not more similar to each other than to those from other individuals. In two cases, different tumor regions of the same individuals were represented in distant clusters of the TCGA cohort, illustrating the extensive epigenomic intratumor heterogeneity of ADCs. We found no evidence for the lymph node metastases to be derived from a common growth pattern. Instead, they had evolved early and separately from a particular pattern in each primary tumor. Our results suggest that extensive variation of epigenomic features contributes to the molecular and phenotypic heterogeneity of primary ADCs and lymph node metastases.
Assuntos
Adenocarcinoma de Pulmão/genética , Metilação de DNA/genética , Neoplasias Pulmonares/genética , Idoso , Idoso de 80 Anos ou mais , Evolução Clonal , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Regiões Promotoras Genéticas/genéticaRESUMO
Cancer of unknown primary (CUP) denotes cancer cases where metastatic spread is histologically confirmed, but no respective primary tumor can be identified. The challenging diagnosis of CUP is further complicated in cases with previously identified malignancies or with dubious clonal relationship between metastatic sites due to ambiguous histology. Our study aims at elucidating clonal relationships by comparing the respective mutational spectra. Targeted next-generation sequencing (NGS) employing formalin-fixed and paraffin-embedded (FFPE) tumor tissue was performed on 174 consecutive CUP patients. Among these, 43/174 (24.7%) patients had a documented prior malignancy. Data on pairwise targeted NGS testing to address clonal relationships between the previous malignancy and the presumed CUP (n = 11) or between different CUP metastatic sites (n = 7) was available in 18 patients. NGS could clarify clonal relationships in 16/18 cases. Among the 11 CUP patients with antecedent malignancies, four cases were clonally independent of the previous malignancy but harbored deleterious germline mutations in BRCA/BAP1/ATM genes. Seven CUP cases were clonally related to the antecedent malignancy, changing the CUP diagnosis to relapse of the prior malignancy. In the seven CUP cases, with doubtfully related metastatic sites, NGS confirmed clonal relationship in five cases and was inconclusive in two. In conclusion, NGS proved an efficient tool to elucidate clonal relationships in clinically challenging CUP cases. Our study cautions against a premature diagnosis of CUP. Relapses of antecedent malignancies should be carefully considered. CUPs clonally independent from the antecedent malignancy should raise a red flag of a potential cancer-predisposing germline mutation.