RESUMO
Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.
Assuntos
Magnoliopsida , Madeira , Madeira/fisiologia , Filogenia , Xilema/fisiologia , Clima Tropical , Carboidratos , Água/fisiologiaRESUMO
Circular economy emphasizes the idea of transforming products involving economic growth and improving the ecological system to reduce the negative consequences caused by the excessive use of raw materials. This can be achieved with the use of second-generation biomass that converts industrial and agricultural wastes into bulk chemicals. The use of catalytic processes is essential to achieve a viable upgrade of biofuels from the lignocellulosic biomass. We carried out density functional theory calculations to explore the relationship between 13 transition metals (TMs) properties, as catalysts, and their affinity for hydrogen and oxygen, as key species in the valourization of biomass. The relation of these parameters will define the trends of the hydrodeoxygenation (HDO) process on biomass-derived compounds. We found the hydrogen and oxygen adsorption energies in the most stable site have a linear relation with electronic properties of these metals that will rationalize the surface's ability to bind the biomass-derived compounds and break the C-O bonds. This will accelerate the catalyst innovation for low temperature and efficient HDO processes on biomass derivates, e.g. guaiacol and anisole, among others. Among the monometallic catalysts explored, the scaling relationship pointed out that Ni has a promising balance between hydrogen and oxygen affinities according to the d-band centre and d-band width models. The comparison of the calculated descriptors to the adsorption strength of guaiacol on the investigated surfaces indicates that the d-band properties alone are not best suited to describe the trend. Instead, we found that a linear combination of work function and d-band properties gives significantly better correlation. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
RESUMO
Supported gold nanoparticles are used for a wide range of catalytic processes. In this work, we use dispersion corrected density functional theory (DFT-D) to study the effect of commonly used support materials (MgO, C, CeO2) on small gold particles with up to 19 atoms. Our results show that the preferred cluster shape and morphology is highly dependent on the support material due to different adsorption strength and structural mismatch between the cluster and the surface material. We developed an algorithm to measure the mismatch between the cluster interface and the support surface. Moreover, depending on the support material, the gold clusters exhibit a positive or negative polarisation, which ultimately has strong implications on the catalytic activity of such particles. This behaviour is rationalised by an analysis of the electronic structure of the metal particles and support materials.
RESUMO
Ruthenium-based olefin metathesis catalysts are used in laboratory-scale organic synthesis across chemistry, largely thanks to their ease of handling and functional group tolerance. In spite of this robustness, these catalysts readily decompose, via little-understood pathways, to species that promote double-bond migration (isomerization) in both the 1-alkene reagents and the internal-alkene products. We have studied, using density functional theory (DFT), the reactivity of the Hoveyda-Grubbs second-generation catalyst 2 with allylbenzene, and discovered a facile new decomposition pathway. In this pathway, the alkylidene ligand is lost, via ring expansion of the metallacyclobutane intermediate, leading to the spin-triplet 12-electron complex (SIMes)RuCl2 (3R21, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). DFT calculations predict 3R21 to be a very active alkene isomerization initiator, either operating as a catalyst itself, via a η3-allyl mechanism, or, after spin inversion to give R21 and formation of a cyclometalated Ru-hydride complex, via a hydride mechanism. The calculations also suggest that the alkylidene-free ruthenium complexes may regenerate alkylidene via dinuclear ruthenium activation of alkene. The predicted capacity to initiate isomerization is confirmed in catalytic tests using p-cymene-stabilized R21 (5), which promotes isomerization in particular under conditions favoring dissociation of p-cymene and disfavoring formation of aggregates of 5. The same qualitative trends in the relative metathesis and isomerization selectivities are observed in identical tests of 2, indicating that 5 and 2 share the same catalytic cycles for both metathesis and isomerization, consistent with the calculated reaction network covering metathesis, alkylidene loss, isomerization, and alkylidene regeneration.
RESUMO
In the past two decades, repeated discoveries of numerous geometric earthworks in interfluvial regions of Amazonia have shed new light onto the territorial extent and the long-term impact of pre-Columbian populations on contemporary landscapes. In particular, the recent development of LiDAR imagery has accelerated the discovery of earthworks in densely forested hinterlands throughout the Amazon basin and the Guiana Shield. This study aimed to evaluate the extent and landscape-scale spatial variations of pre-Columbian disturbances at three ring ditch sites in the French Guiana hinterland. We carried out extensive soil surveys along approximately 1 km-long transects spanning from ring ditches through the surrounding landscapes, and drawn upon multiple indicators, including archaeological artifacts, macro- and micro-charcoals, soil colorimetry, and physicochemical properties to retrace the pre-Columbian history of these sites in terms of occupation periods, anthropogenic soil alteration, and ancient land use. Our results revealed a perennial occupation of these sites over long periods ranging from the 5th and 15th centuries CE, with local enrichments in chemical indicators (Corg, N, Mg, K, Ca) both within the enclosures of ring ditches and in the surrounding landscapes. Physicochemical properties variations were accompanied by variations in soil colorimetry, with darker soils within the enclosure of ring ditches in terra-firme areas. Interestingly however, soil properties did not meet all the characteristics of the so-called Amazonian Dark Earths, thus advocating a paradigm shift towards a better integration of Amazonian Brown Earths into the definition of anthropogenic soils in Amazonia. Soil disturbances were also associated to local enrichments in macro- and micro-charcoals that support in situ fire management that could be attributed to forest clearance and/or slash-and-burn cultivation. Taken together, our results support the idea that pre-Columbian societies made extensive use of their landscapes in the interfluvial regions of the French Guiana hinterlands.
Assuntos
Solo , Guiana Francesa , Solo/química , Arqueologia , Humanos , Florestas , Efeitos Antropogênicos , História MedievalRESUMO
Understanding how biotic interactions and environmental filtering mediated by soil properties shape plant community assembly is a major challenge in ecology, especially when studying complex and hyperdiverse ecosystems like tropical forests. To shed light on the influence of both factors, we examined how the edaphic optimum of species (their niche position) related to their edaphic range (their niche breadth) along different environmental gradients and how this translates into functional strategies. Here we tested four scenarios describing the shape of the niche breadth-niche position relationship, including one neutral scenario and three scenarios proposing different relative influences of abiotic and biotic factors on community assembly along a soil resource gradient. To do so, we used soil concentration data for five key nutrients (N, P, Ca, Mg, and K), along with accurate measurements of 14 leaf, stem, and root traits for 246 tree species inventoried in 101 plots located across Eastern (French Guiana) and Western (Peru) Amazonia. We found that species niche breadth increased linearly with species niche position along each soil nutrient gradient. This increase was associated with more resource acquisitive traits in the leaves and the roots for soil N, Ca, Mg, and K concentration, while it was negatively associated with wood density for soil P concentration. These observations agreed with one of our hypothetical scenarios in which species with resource conservation traits are confined to the most nutrient-depleted soils (abiotic filter), but they are outperformed by faster-growing species in more fertile conditions (biotic filter). Our results refine and strengthen support for niche theories of species assembly while providing an integrated approach to improving forest management policies.
Assuntos
Ecossistema , Árvores , Florestas , Madeira , Solo , Clima TropicalRESUMO
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.
Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima TropicalRESUMO
The reinvestigation of two allyl zinc compounds, parent bis(allyl)zinc [Zn(C(3)H(5))(2)] (1) and 2-methallyl chloro zinc [Zn(C(4)H(7))Cl] (2), revealed two new coordination modes in the solid state for the allyl ligand, viz cis- and trans-µ(2)-η(1):η(1). These results call for modification of the conventional interpretation of zinc-allyl interactions. Computational results indicate that the classical η(3)-bonding mode of the allyl ligand is not favored in zinc compounds. A rare case of a zinc-olefin interaction in the dimer of [Zn(η(1)-C(3)H(5))(OC(C(3)H(5))Ph(2))] was found in the monoinsertion product of 1 with benzophenone.
RESUMO
OBJECTIVES: Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support. Little is known about how NSC impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits linked to hydraulic and mechanical functioning. DATA DESCRIPTION: The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm species from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to water transportation, mechanical support and storage. Data will also give researchers keys to understanding the ability of trees to adjust to a changing climate.
Assuntos
Árvores , Xilema , Carboidratos , Carbono/metabolismo , Folhas de Planta/metabolismo , Clima Tropical , Água , Xilema/metabolismoRESUMO
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.
Assuntos
Florestas , Árvores , Biodiversidade , Brasil , HumanosRESUMO
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.
Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , BrasilRESUMO
Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups.
Assuntos
Biodiversidade , Ecossistema , Floresta Úmida , Clima Tropical , Animais , Formigas/fisiologia , Guiana Francesa , Fungos/fisiologia , Invertebrados/fisiologia , Filogenia , Solo , Árvores/fisiologiaRESUMO
To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25-30 and 30-35 m2 /ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought.
Assuntos
Florestas , Árvores , Brasil , Guiana Francesa , Humanos , OcupaçõesRESUMO
BACKGROUND: Palikur Amerindians live in the eastern part of French Guiana which is undergoing deep-seated changes due to the geographical and economic opening of the region. So far, Palikur's traditional ecological knowledge is poorly documented, apart from medicinal plants. The aim of this study was to document ethnobotanical practices related to traditional construction in the region. METHODS: A combination of qualitative and quantitative methods was used. Thirty-nine Palikur men were interviewed in three localities (Saint-Georges de l'Oyapock, Regina and Trois-Palétuviers) between December 2013 and July 2014. Twenty-four inventories of wood species used in traditional buildings were conducted in the villages, as well as ethnobotanical walks in the neighboring forests, to complete data about usable species and to determine Linnaean names. RESULTS: After an ethnographic description of roundwood Palikur habitat, the in situ wood selection process of Palikur is precisely described. A total of 960 roundwood pieces were inventoried in situ according to Palikur taxonomy, of which 860 were beams and rafters, and 100 posts in 20 permanent and 4 temporary buildings. Twenty-seven folk species were identified. Sixty-three folk species used in construction were recorded during ethnobotanical walks. They correspond to 263 botanical species belonging to 25 families. Posts in permanent buildings were made of yawu (Minquartia guianensis) (51%) and wakap (Vouacapoua americana) (14%). Beams and rafters were made of wood from Annonaceae (79%) and Lecythidaceae (13%) families. The most frequently used species were kuukumwi priye (Oxandra asbeckii), kuukumwi seyne (Pseudoxandra cuspidata), and pukuu (Xylopia nitida and X. cayennensis). CONCLUSIONS: Although the Palikur's relationship with their habitat is undergoing significant changes, knowledge about construction wood is still very much alive in the Oyapock basin. Many people continue to construct traditional buildings alongside modern houses, using a wide array of species described here for the first time, along with the techniques used.
Assuntos
Materiais de Construção , Etnobotânica , Madeira , Biodiversidade , Cultura , Ecossistema , Guiana Francesa , Recursos em Saúde , Habitação , ConhecimentoRESUMO
The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original multi-access electronic key for the identification of 389 tree genera occurring in French Guiana terra-firme forests, based on a set of 79 morphological characters related to vegetative, floral and fruit characters. Its purpose is to help Amazonian tree identification and to support the dissemination of botanical knowledge to non-specialists, including forest workers, students and researchers from other scientific disciplines. The electronic key is accessible with the free access software Xper², and the database is publicly available on figshare: https://figshare.com/s/75d890b7d707e0ffc9bf (doi: 10.6084/m9.figshare.2682550).
RESUMO
Plant responses to natural enemies include formation of secondary metabolites acting as direct or indirect defenses. Volatile terpenes represent one of the most diverse groups of secondary metabolites. We aimed to explore evolutionary patterns of volatile terpene emission. We measured the composition of damage-induced volatile terpenes from 202 Amazonian tree species, spanning the angiosperm phylogeny. Volatile terpenes were extracted with solid-phase micro extraction and desorbed in a gas chromatography-mass spectrometry for compound identification. The chemical diversity of the terpene blend showed a strong phylogenetic signal as closely related species emitted a similar number of compounds. Closely related species also tended to have compositionally similar blends, although this relationship was weak. Meanwhile, the ability to emit a given compound showed no significant phylogenetic signal for 200 of 286 compounds, indicating a high rate of diversification in terpene synthesis and/or great variability in their expression. Three lineages (Magnoliales, Laurales, and Sapindales) showed exceptionally high rates of terpene diversification. Of the 70 compounds found in >10% of their species, 69 displayed significant correlated evolution with at least one other compound. These results provide insights into the complex evolutionary history of volatile terpenes in angiosperms, while highlighting the need for further research into this important class of compounds.
RESUMO
We examined tree-soil habitat associations in lowland forest communities at Paracou, French Guiana. We analyzed a large dataset assembling six permanent plots totaling 37.5 ha, in which extensive LIDAR-derived topographical data and soil chemical and physical data have been integrated with precise botanical determinations. Map of relative elevation from the nearest stream summarized both soil fertility and hydromorphic characteristics, with seasonally inundated bottomlands having higher soil phosphate content and base saturation, and plateaus having higher soil carbon, nitrogen and aluminum contents. We employed a statistical test of correlations between tree species density and environmental maps, by generating Monte Carlo simulations of random raster images that preserve autocorrelation of the original maps. Nearly three fourths of the 94 taxa with at least one stem per ha showed a significant correlation between tree density and relative elevation, revealing contrasted species-habitat associations in term of abundance, with seasonally inundated bottomlands (24.5% of species) and well-drained plateaus (48.9% of species). We also observed species preferences for environments with or without steep slopes (13.8% and 10.6%, respectively). We observed that closely-related species were frequently associated with different soil habitats in this region (70% of the 14 genera with congeneric species that have a significant association test) suggesting species-habitat associations have arisen multiple times in this tree community. We also tested if species with similar habitat preferences shared functional strategies. We found that seasonally inundated forest specialists tended to have smaller stature (maximum diameter) than species found on plateaus. Our results underline the importance of tree-soil habitat associations in structuring diverse communities at fine spatial scales and suggest that additional studies are needed to disentangle community assembly mechanisms related to dispersal limitation, biotic interactions and environmental filtering from species-habitat associations. Moreover, they provide a framework to generalize across tropical forest sites.
Assuntos
Florestas , Modelos Biológicos , Solo , Clima TropicalRESUMO
While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.
RESUMO
Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups.
Assuntos
Chrysobalanaceae/classificação , Chrysobalanaceae/genética , Biologia Computacional/métodos , Genoma de Planta , Filogenia , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/genética , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
BACKGROUND: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. METHODOLOGY/PRINCIPAL FINDINGS: Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. CONCLUSION/SIGNIFICANCE: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.