Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 135(3): 497-509, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984161

RESUMO

Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.


Assuntos
Proteínas Metiltransferases/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
EMBO J ; 34(14): 1925-41, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26069323

RESUMO

The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , Proteína DEAD-box 20/genética , Proteína DEAD-box 20/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor , Atrofia Muscular Espinal/genética , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética
3.
Wiley Interdiscip Rev RNA ; 2(5): 718-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21823231

RESUMO

Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/biossíntese , Spliceossomos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Humanos , Camundongos , Modelos Biológicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
4.
Nat Struct Mol Biol ; 18(12): 1414-20, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101937

RESUMO

Arginine dimethylation plays critical roles in the assembly of ribonucleoprotein complexes in pre-mRNA splicing and piRNA pathways. We report solution structures of SMN and SPF30 Tudor domains bound to symmetric and asymmetric dimethylated arginine (DMA) that is inherent in the RNP complexes. An aromatic cage in the Tudor domain mediates dimethylarginine recognition by electrostatic stabilization through cation-π interactions. Distinct from extended Tudor domains, dimethylarginine binding by the SMN and SPF30 Tudor domains is independent of proximal residues in the ligand. Yet, enhanced micromolar affinities are obtained by external cooperativity when multiple methylation marks are presented in arginine- and glycine-rich peptide ligands. A hydrogen bond network in the SMN Tudor domain, including Glu134 and a tyrosine hydroxyl of the aromatic cage, enhances cation-π interactions and is impaired by a mutation causing an E134K substitution associated with spinal muscular atrophy. Our structural analysis enables the design of an optimized binding pocket and the prediction of DMA binding properties of Tudor domains.


Assuntos
Arginina/análogos & derivados , Proteínas do Complexo SMN/química , Proteína 1 de Sobrevivência do Neurônio Motor/química , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Fatores de Processamento de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Alinhamento de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA