Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525247

RESUMO

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Assuntos
Linfonodos , Melanoma , Animais , Tolerância Imunológica , Imunoterapia , Metástase Linfática/patologia , Melanoma/patologia , Camundongos
2.
Immunity ; 57(6): 1289-1305.e9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38772366

RESUMO

Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.


Assuntos
Tecido Adiposo , Homeostase , Resistência à Insulina , Linfócitos , Mitocôndrias , Obesidade , Receptor de Morte Celular Programada 1 , Proteínas Serina-Treonina Quinases , Animais , Resistência à Insulina/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/metabolismo , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imunidade Inata , Masculino , Mitofagia/imunologia , Quinases Proteína-Quinases Ativadas por AMP
3.
Cell ; 168(3): 487-502.e15, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111070

RESUMO

Immune responses involve coordination across cell types and tissues. However, studies in cancer immunotherapy have focused heavily on local immune responses in the tumor microenvironment. To investigate immune activity more broadly, we performed an organism-wide study in genetically engineered cancer models using mass cytometry. We analyzed immune responses in several tissues after immunotherapy by developing intuitive models for visualizing single-cell data with statistical inference. Immune activation was evident in the tumor and systemically shortly after effective therapy was administered. However, during tumor rejection, only peripheral immune cells sustained their proliferation. This systemic response was coordinated across tissues and required for tumor eradication in several immunotherapy models. An emergent population of peripheral CD4 T cells conferred protection against new tumors and was significantly expanded in patients responding to immunotherapy. These studies demonstrate the critical impact of systemic immune responses that drive tumor rejection.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Medula Óssea/imunologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Tecido Linfoide/imunologia , Masculino , Melanoma/imunologia , Melanoma/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
4.
Nature ; 626(7999): 635-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297127

RESUMO

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Elasticidade , Matriz Extracelular , Cirrose Hepática , Neoplasias Hepáticas , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Viscosidade , Proteínas de Sinalização YAP/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
5.
Immunity ; 47(6): 1037-1050.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221729

RESUMO

Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.


Assuntos
Antígenos de Diferenciação/imunologia , Variação Biológica Individual , Células Dendríticas/imunologia , Fenótipo , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Imunológicos/imunologia , Pele/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação/genética , Biomarcadores/análise , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/biossíntese , Citofotometria/métodos , Células Dendríticas/citologia , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptores Imunológicos/genética , Pele/citologia , Baço/citologia , Baço/imunologia , Receptor Tirosina Quinase Axl
6.
Nat Methods ; 19(6): 759-769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654951

RESUMO

Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.


Assuntos
Neoplasias de Cabeça e Pescoço , Estudos de Coortes , Humanos , Metástase Linfática , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
Immunity ; 45(3): 641-655, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27590114

RESUMO

Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Microbiota/imunologia , Tretinoína/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Colo/imunologia , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
8.
Nature ; 567(7746): 56-60, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814731

RESUMO

The cytokine interferon-γ (IFNγ) is a central coordinator of innate and adaptive immunity, but its highly pleiotropic actions have diminished its prospects for use as an immunotherapeutic agent. Here, we took a structure-based approach to decoupling IFNγ pleiotropy. We engineered an affinity-enhanced variant of the ligand-binding chain of the IFNγ receptor IFNγR1, which enabled us to determine the crystal structure of the complete hexameric (2:2:2) IFNγ-IFNγR1-IFNγR2 signalling complex at 3.25 Å resolution. The structure reveals the mechanism underlying deficits in IFNγ responsiveness in mycobacterial disease syndrome resulting from a T168N mutation in IFNγR2, which impairs assembly of the full signalling complex. The topology of the hexameric complex offers a blueprint for engineering IFNγ variants to tune IFNγ receptor signalling output. Unexpectedly, we found that several partial IFNγ agonists exhibited biased gene-expression profiles. These biased agonists retained the ability to induce upregulation of major histocompatibility complex class I antigen expression, but exhibited impaired induction of programmed death-ligand 1 expression in a wide range of human cancer cell lines, offering a route to decoupling immunostimulatory and immunosuppressive functions of IFNγ for therapeutic applications.


Assuntos
Desenho de Fármacos , Interferon gama/agonistas , Interferon gama/imunologia , Receptores de Interferon/química , Receptores de Interferon/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Agonismo Parcial de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interferon gama/química , Interferon gama/genética , Ligantes , Modelos Moleculares , Mutação , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Estabilidade Proteica , Receptores de Interferon/genética , Transdução de Sinais , Relação Estrutura-Atividade , Receptor de Interferon gama
9.
J Neuroinflammation ; 18(1): 199, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511110

RESUMO

BACKGROUND: Patients with chronic inflammatory disorders such as inflammatory bowel disease frequently experience neurological complications including epilepsy, depression, attention deficit disorders, migraines, and dementia. However, the mechanistic basis for these associations is unknown. Given that many patients are unresponsive to existing medications or experience debilitating side effects, novel therapeutics that target the underlying pathophysiology of these conditions are urgently needed. METHODS: Because intestinal disorders such as inflammatory bowel disease are robustly associated with neurological symptoms, we used three different mouse models of colitis to investigate the impact of peripheral inflammatory disease on the brain. We assessed neuronal hyperexcitability, which is associated with many neurological symptoms, by measuring seizure threshold in healthy and colitic mice. We profiled the neuroinflammatory phenotype of colitic mice and used depletion and neutralization assays to identify the specific mediators responsible for colitis-induced neuronal hyperexcitability. To determine whether our findings in murine models overlapped with a human phenotype, we performed gene expression profiling, pathway analysis, and deconvolution on microarray data from hyperexcitable human brain tissue from patients with epilepsy. RESULTS: We observed that murine colitis induces neuroinflammation characterized by increased pro-inflammatory cytokine production, decreased tight junction protein expression, and infiltration of monocytes and neutrophils into the brain. We also observed sustained neuronal hyperexcitability in colitic mice. Colitis-induced neuronal hyperexcitability was ameliorated by neutrophil depletion or TNFα blockade. Gene expression profiling of hyperexcitable brain tissue resected from patients with epilepsy also revealed a remarkably similar pathology to that seen in the brains of colitic mice, including neutrophil infiltration and high TNFα expression. CONCLUSIONS: Our results reveal neutrophils and TNFα as central regulators of neuronal hyperexcitability of diverse etiology. Thus, there is a strong rationale for evaluating anti-inflammatory agents, including clinically approved TNFα inhibitors, for the treatment of neurological and psychiatric symptoms present in, and potentially independent of, a diagnosed inflammatory disorder.


Assuntos
Colite , Epilepsia , Animais , Encéfalo/metabolismo , Colite/induzido quimicamente , Modelos Animais de Doenças , Epilepsia/complicações , Humanos , Camundongos , Neurônios , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Nature ; 521(7550): 99-104, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25924063

RESUMO

Whereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours. Here we find that allogeneic tumour rejection is initiated in mice by naturally occurring tumour-binding IgG antibodies, which enable dendritic cells (DCs) to internalize tumour antigens and subsequently activate tumour-reactive T cells. We exploited this mechanism to treat autologous and autochthonous tumours successfully. Either systemic administration of DCs loaded with allogeneic-IgG-coated tumour cells or intratumoral injection of allogeneic IgG in combination with DC stimuli induced potent T-cell-mediated antitumour immune responses, resulting in tumour eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumours and metastases, as well as the injected primary tumours. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumour antigens after culture with allogeneic-IgG-loaded DCs, recapitulating our findings in mice. These results reveal that tumour-binding allogeneic IgG can induce powerful antitumour immunity that can be exploited for cancer immunotherapy.


Assuntos
Anticorpos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Células Dendríticas/imunologia , Imunoglobulina G/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antineoplásicos/administração & dosagem , Antígenos CD40/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina G/administração & dosagem , Isoanticorpos/administração & dosagem , Isoanticorpos/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias/imunologia , Neoplasias/patologia , Receptores de IgG/imunologia , Fator de Necrose Tumoral alfa/imunologia
11.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198548

RESUMO

Inflammation in the tumor microenvironment has been shown to promote disease progression in pancreatic ductal adenocarcinoma (PDAC); however, the role of macrophage metabolism in promoting inflammation is unclear. Using an orthotopic mouse model of PDAC, we demonstrate that macrophages from tumor-bearing mice exhibit elevated glycolysis. Macrophage-specific deletion of Glucose Transporter 1 (GLUT1) significantly reduced tumor burden, which was accompanied by increased Natural Killer and CD8+ T cell activity and suppression of the NLRP3-IL1ß inflammasome axis. Administration of mice with a GLUT1-specific inhibitor reduced tumor burden, comparable with gemcitabine, the current standard-of-care. In addition, we observe that intra-tumoral macrophages from human PDAC patients exhibit a pronounced glycolytic signature, which reliably predicts poor survival. Our data support a key role for macrophage metabolism in tumor immunity, which could be exploited to improve patient outcomes.


Assuntos
Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Citoproteção , Glicólise , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Proliferação de Células/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Hidroxibenzoatos/farmacologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias Pancreáticas/imunologia , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas
12.
Nature ; 565(7741): 573-574, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683936
13.
Proc Natl Acad Sci U S A ; 114(8): 1988-1993, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167780

RESUMO

Plasmacytoid dendritic cells (pDCs) are known mainly for their secretion of type I IFN upon viral encounter. We describe a CD2hiCD5+CD81+ pDC subset, distinguished by prominent dendrites and a mature phenotype, in human blood, bone marrow, and tonsil, which can be generated from CD34+ progenitors. These CD2hiCD5+CD81+ cells express classical pDC markers, as well as the toll-like receptors that enable conventional pDCs to respond to viral infection. However, their gene expression profile is distinct, and they produce little or no type I IFN upon stimulation with CpG oligonucleotides, likely due to their diminished expression of IFN regulatory factor 7. A similar population of CD5+CD81+ pDCs is present in mice and also does not produce type I IFN after CpG stimulation. In contrast to conventional CD5-CD81- pDCs, human CD5+CD81+ pDCs are potent stimulators of B-cell activation and antibody production and strong inducers of T-cell proliferation and Treg formation. These findings reveal the presence of a discrete pDC population that does not produce type I IFN and yet mediates important immune functions previously attributed to all pDCs.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Proliferação de Células/fisiologia , Células Dendríticas/fisiologia , Ativação Linfocitária , Linfócitos T/fisiologia , Animais , Antígenos CD2/metabolismo , Antígenos CD5/metabolismo , Separação Celular , Citometria de Fluxo , Humanos , Interferon Tipo I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Tetraspanina 28/metabolismo , Receptores Toll-Like/metabolismo
14.
Blood ; 129(12): 1718-1728, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28096089

RESUMO

The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.


Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica , Células T Matadoras Naturais/imunologia , Animais , Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Camundongos
15.
Rapid Commun Mass Spectrom ; 32(6): 480-488, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29334584

RESUMO

RATIONALE: A novel benzimidazole compound ZLN005 was previously identified as a transcriptional activator of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in certain metabolic tissues. Upregulation of PGC-1α by ZLN005 has been shown to have a beneficial effect in a diabetic mouse model and in a coronary artery disease model in vitro. ZLN005 could also have therapeutic potential in neurodegenerative diseases involving down-regulation of PGC-1α. Given the phenotypic efficacy of ZLN005 in several animal models of human disease, its metabolic profile was investigated to guide the development of novel therapeutics using ZLN005 as the lead compound. METHODS: ZLN005 was incubated with both rat and human liver microsomes and S9 fractions to identify in vitro metabolites. Urine from rats dosed with ZLN005 was used to identify in vivo metabolites. Extracted metabolites were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using a hybrid linear ion trap triple quadrupole mass spectrometer in full scan, enhanced product ion scan, neutral loss scan and precursor scan modes. Metabolites in plasma and brain of ZLN005-treated rats were also profiled using multiple reaction monitoring. RESULTS: Identified in vitro transformations of ZLN005 include mono- and dihydroxylation, further oxidation to carboxylic acids, and mono-O-glucuronide and sulfate conjugation to hydroxy ZLN005 as well as glutathione conjugation. Identified in vivo metabolites are mainly glucuronide and sulfate conjugates of dihydroxyl, carboxyl, and hydroxy acid of the parent compound. The parent compound as well as several major phase I metabolites were found in rat plasma and brain. CONCLUSIONS: Using both in vitro and in vivo methods, we elucidated the metabolic pathway of ZLN005. Phase I metabolites with hydroxylation and carboxylation, as well as phase II metabolites with glucuronide, sulfate and glutathione conjugation, were identified.

16.
Angew Chem Int Ed Engl ; 57(12): 3137-3142, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29370452

RESUMO

The C-type lectins dectin-1 and dectin-2 contribute to innate immunity against microbial pathogens by recognizing their foreign glycan structures. These receptors are promising targets for vaccine development and cancer immunotherapy. However, currently available agonists are heterogeneous glycoconjugates and polysaccharides from natural sources. Herein, we designed and synthesized the first chemically defined ligands for dectin-1 and dectin-2. They comprised glycopolypeptides bearing mono-, di-, and trisaccharides and were built through polymerization of glycosylated N-carboxyanhydrides. Through this approach, we achieved glycopolypeptides with high molecular weights and low dispersities. We identified structures that elicit a pro-inflammatory response through dectin-1 or dectin-2 in antigen-presenting cells. With their native proteinaceous backbones and natural glycosidic linkages, these agonists are attractive for translational applications.


Assuntos
Anidridos/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Glicopeptídeos/metabolismo , Lectinas Tipo C/metabolismo , Anidridos/química , Células Cultivadas , Glicopeptídeos/química , Humanos , Lectinas Tipo C/química , Ligantes , Estrutura Molecular , Polimerização
17.
Eur J Immunol ; 45(2): 612-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25352488

RESUMO

IgG autoantibodies, including antibodies to double-stranded DNA (dsDNA), are pathogenic in systemic lupus erythematosus (SLE), but the mechanisms controlling their production are not understood. To assess the role of invariant natural killer T (iNKT) cells in this process, we studied 44 lupus patients. We took advantage of the propensity of PBMCs from patients with active disease to spontaneously secrete IgG in vitro. Despite the rarity of iNKT cells in lupus blood (0.002-0.05% of CD3-positive T cells), antibody blockade of the conserved iNKT TCR or its ligand, CD1d, or selective depletion of iNKT cells, inhibited spontaneous secretion of total IgG and anti-dsDNA IgG by lupus PBMCs. Addition of anti-iNKT or anti-CD1d antibody to PBMC cultures also reduced the frequency of plasma cells, suggesting that lupus iNKT cells induce B-cell maturation. Like fresh iNKT cells, expanded iNKT-cell lines from lupus patients, but not healthy subjects, induced autologous B cells to secrete antibodies, including IgG anti-dsDNA. This activity was inhibited by anti-CD40L antibody, as well as anti-CD1d antibody, confirming a role for CD40L-CD40 and TCR-CD1d interactions in lupus iNKT-cell-mediated help. These results reveal a critical role for iNKT cells in B-cell maturation and autoantibody production in patients with lupus.


Assuntos
Anticorpos Antinucleares/biossíntese , Antígenos CD1d/imunologia , Imunoglobulina G/biossíntese , Lúpus Eritematoso Sistêmico/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Adulto , Anticorpos Neutralizantes/farmacologia , Antígenos CD1d/genética , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/genética , Ligante de CD40/imunologia , Diferenciação Celular , Separação Celular , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária , Depleção Linfocítica , Células T Matadoras Naturais/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética
18.
Diabetologia ; 58(7): 1579-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25952479

RESUMO

AIMS/HYPOTHESIS: Proinflammatory immune cell infiltration in human adipose tissue is associated with the development of insulin resistance. We previously identified, via a gene expression-based genome-wide association study, the cell-surface immune cell receptor CD44 as a functionally important gene associated with type 2 diabetes. We then showed that, compared with controls, Cd44 knockout mice were protected from insulin resistance and adipose tissue inflammation during diet-induced obesity. We thus sought to test whether CD44 is associated with adipose tissue inflammation and insulin resistance in humans. METHODS: Participants included 58 healthy, overweight/moderately obese white adults who met predetermined criteria for insulin resistance or insulin sensitivity based on the modified insulin-suppression test. Serum was collected from 43 participants to measure circulating concentrations of CD44. Subcutaneous adipose tissue was obtained from 17 participants to compare CD44, its ligand osteopontin (OPN, also known as SPP1) and pro-inflammatory gene expression. CD44 expression on adipose tissue macrophage (ATM) surfaces was determined by flow cytometry. RESULTS: Serum CD44 concentrations were significantly increased in insulin-resistant (IR) participants. CD44 gene expression in subcutaneous adipose tissue was threefold higher in the IR subgroup. The expression of OPN, CD68 and IL6 was also significantly elevated in IR individuals. CD44 gene expression correlated significantly with CD68 and IL6 expression. CD44 density on ATMs was associated with proinflammatory M1 polarisation. CONCLUSIONS/INTERPRETATION: CD44 and OPN in human adipose tissue are associated with localised inflammation and systemic insulin resistance. This receptor-ligand pair is worthy of further research as a potentially modifiable contributor to human insulin resistance and type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Tecido Adiposo/citologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Feminino , Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Receptores de Hialuronatos/genética , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Resistência à Insulina/genética , Masculino , Pessoa de Meia-Idade , Osteopontina/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Gordura Subcutânea/metabolismo
19.
J Immunol ; 191(3): 1175-87, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23794631

RESUMO

In chronically inflamed tissues, such as those affected by autoimmune disease, activated Th cells often colocalize with monocytes. We investigate in this study how murine Th cells influence the phenotype and function of monocytes. The data demonstrate that Th1, Th2, and Th17 subsets promote the differentiation of autologous monocytes into MHC class II(+), CD11b(+), CD11c(+) DC that we call DCTh. Although all Th subsets induce the formation of DCTh, activated Th17 cells uniquely promote the formation of IL-12/IL-23-producing DCTh (DCTh17) that can polarize both naive and Th17 cells to a Th1 phenotype. In the inflamed CNS of mice with Th17-mediated experimental autoimmune encephalomyelitis, Th cells colocalize with DC, as well as monocytes, and the Th cells obtained from these lesions drive the formation of DCTh that are phenotypically indistinguishable from DCTh17 and polarize naive T cells toward a Th1 phenotype. These results suggest that DCTh17 are critical in the interplay of Th17- and Th1-mediated responses and may explain the previous finding that IL-17-secreting Th cells become IFN-γ-secreting Th1 cells in experimental autoimmune encephalomyelitis and other autoimmune disorders.


Assuntos
Autoimunidade/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular , Movimento Celular , Polaridade Celular , Células Cultivadas , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/metabolismo , Interleucina-12/biossíntese , Interleucina-17/metabolismo , Interleucina-23/biossíntese , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia
20.
Cell Mol Life Sci ; 71(6): 1033-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24127133

RESUMO

Obesity-related insulin resistance is a chronic inflammatory condition that often gives rise to type 2 diabetes (T2D). Much evidence supports a role for pro-inflammatory T cells and macrophages in promoting local inflammation in tissues such as visceral adipose tissue (VAT) leading to insulin resistance. More recently, B cells have emerged as an additional critical player in orchestrating these processes. B cells infiltrate VAT and display functional and phenotypic changes in response to diet-induced obesity. B cells contribute to insulin resistance by presenting antigens to T cells, secreting inflammatory cytokines, and producing pathogenic antibodies. B cell manipulation represents a novel approach to the treatment of obesity-related insulin resistance and potentially to the prevention of T2D. This review summarizes the roles of B cells in governing VAT inflammation and the mechanisms by which these cells contribute to altered glucose homeostasis in insulin resistance.


Assuntos
Linfócitos B/imunologia , Inflamação/imunologia , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/imunologia , Obesidade/patologia , Animais , Linfócitos B/patologia , Diabetes Mellitus Tipo 2/imunologia , Humanos , Inflamação/fisiopatologia , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/citologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA