RESUMO
Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or ß2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Variação Genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais , Biópsia , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Doxorrubicina/efeitos adversos , Doxorrubicina/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Razão de Chances , Prednisona/efeitos adversos , Prednisona/uso terapêutico , Prognóstico , Rituximab/efeitos adversos , Rituximab/uso terapêutico , Falha de Tratamento , Resultado do Tratamento , Vincristina/efeitos adversos , Vincristina/uso terapêuticoRESUMO
Pediatric large B-cell lymphomas (LBCLs) share morphological and phenotypic features with adult types but have better prognosis. The higher frequency of some subtypes such as LBCL with IRF4 rearrangement (LBCL-IRF4) in children suggests that some age-related biological differences may exist. To characterize the genetic and molecular heterogeneity of these tumors, we studied 31 diffuse LBCLs (DLBCLs), not otherwise specified (NOS); 20 LBCL-IRF4 cases; and 12 cases of high-grade B-cell lymphoma (HGBCL), NOS in patients ≤25 years using an integrated approach, including targeted gene sequencing, copy-number arrays, and gene expression profiling. Each subgroup displayed different molecular profiles. LBCL-IRF4 had frequent mutations in IRF4 and NF-κB pathway genes (CARD11, CD79B, and MYD88), losses of 17p13 and gains of chromosome 7, 11q12.3-q25, whereas DLBCL, NOS was predominantly of germinal center B-cell (GCB) subtype and carried gene mutations similar to the adult counterpart (eg, SOCS1 and KMT2D), gains of 2p16/REL, and losses of 19p13/CD70. A subset of HGBCL, NOS displayed recurrent alterations of Burkitt lymphoma-related genes such as MYC, ID3, and DDX3X and homozygous deletions of 9p21/CDKN2A, whereas other cases were genetically closer to GCB DLBCL. Factors related to unfavorable outcome were age >18 years; activated B-cell (ABC) DLBCL profile, HGBCL, NOS, high genetic complexity, 1q21-q44 gains, 2p16/REL gains/amplifications, 19p13/CD70 homozygous deletions, and TP53 and MYC mutations. In conclusion, these findings further unravel the molecular heterogeneity of pediatric and young adult LBCL, improve the classification of this group of tumors, and provide new parameters for risk stratification.
Assuntos
Fatores Reguladores de Interferon/genética , Linfoma Difuso de Grandes Células B/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/patologia , Masculino , Prognóstico , Transcriptoma , Adulto JovemRESUMO
The role of macrophages (Mo) and their prognostic impact in diffuse large B-cell lymphomas (DLBCL) remain controversial. By regulating the lipid metabolism, Liver-X-Receptors (LXRs) control Mo polarization/inflammatory response, and their pharmacological modulation is under clinical investigation to treat human cancers, including lymphomas. Herein, we surveyed the role of LXRs in DLBCL for prognostic purposes. Comparing bulk tumors with purified malignant and normal B-cells, we found an intriguing association of NR1H3, encoding for the LXR-α isoform, with the tumor microenvironment (TME). CIBERSORTx-based purification on large DLBCL datasets revealed a high expression of the receptor transcript in M1-like pro-inflammatory Mo. By determining an expression cut-off of NR1H3, we used digital measurement to validate its prognostic capacity on two large independent on-trial and real-world cohorts. Independently of classical prognosticators, NR1H3high patients displayed longer survival compared with NR1H3low cases and a high-resolution Mo GEP dissection suggested a remarkable transcriptional divergence between subgroups. Overall, our findings indicate NR1H3 as a Mo-related biomarker identifying patients at higher risk and prompt future preclinical studies investigating its mouldability for therapeutic purposes.
Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Microambiente Tumoral , Receptores X do Fígado/genéticaRESUMO
Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
Assuntos
Leucemia Linfocítica Crônica de Células B , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Reprodutibilidade dos TestesRESUMO
Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large-cell morphology and terminal B-cell differentiation. The differential diagnosis from Burkitt lymphoma, plasma cell myeloma and some variants of diffuse large B-cell lymphoma may be challenging because of the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated 34 cases of PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma-related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2- q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, Epstein-Barr virus (EBV)-negative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors in relation to EBV infection.
Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Linfoma Plasmablástico , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/genética , Linfoma Plasmablástico/diagnóstico , Linfoma Plasmablástico/genéticaRESUMO
Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Regiões 3' não Traduzidas/genética , Processamento Alternativo/genética , Linfócitos B/metabolismo , Proteínas de Transporte/genética , Cromossomos Humanos Par 9/genética , Análise Mutacional de DNA , DNA de Neoplasias/genética , Proteínas de Ligação a DNA , Elementos Facilitadores Genéticos/genética , Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fator de Transcrição PAX5/biossíntese , Fator de Transcrição PAX5/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Transcrição/genéticaRESUMO
Genomic studies have revealed the complex clonal heterogeneity of chronic lymphocytic leukemia (CLL). The acquisition and selection of genomic aberrations may be critical to understanding the progression of this disease. In this study, we have extensively characterized the mutational status of TP53, SF3B1, BIRC3, NOTCH1, and ATM in 406 untreated CLL cases by ultra-deep next-generation sequencing, which detected subclonal mutations down to 0.3% allele frequency. Clonal dynamics were examined in longitudinal samples of 48 CLL patients. We identified a high proportion of subclonal mutations, isolated or associated with clonal aberrations. TP53 mutations were present in 10.6% of patients (6.4% clonal, 4.2% subclonal), ATM mutations in 11.1% (7.8% clonal, 1.3% subclonal, 2% germ line mutations considered pathogenic), SF3B1 mutations in 12.6% (7.4% clonal, 5.2% subclonal), NOTCH1 mutations in 21.8% (14.2% clonal, 7.6% subclonal), and BIRC3 mutations in 4.2% (2% clonal, 2.2% subclonal). ATM mutations, clonal SF3B1, and both clonal and subclonal NOTCH1 mutations predicted for shorter time to first treatment irrespective of the immunoglobulin heavy-chain variable-region gene (IGHV) mutational status. Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status. Clonal evolution in longitudinal samples mainly occurred in cases with mutations in the initial samples and was observed not only after chemotherapy but also in untreated patients. These findings suggest that the characterization of the subclonal architecture and its dynamics in the evolution of the disease may be relevant for the management of CLL patients.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Genes p53 , Proteínas Inibidoras de Apoptose/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Receptor Notch1/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteína 3 com Repetições IAP de Baculovírus , Células Clonais , Análise Mutacional de DNA , Progressão da Doença , Evolução Molecular , Feminino , Humanos , Proteínas Inibidoras de Apoptose/fisiologia , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas , Fosfoproteínas/fisiologia , Prognóstico , Fatores de Processamento de RNA/fisiologia , Receptor Notch1/fisiologia , Tempo para o Tratamento , Resultado do Tratamento , Proteína Supressora de Tumor p53/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Adulto JovemRESUMO
Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.
Assuntos
Genoma Humano/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Análise Mutacional de DNA , Humanos , Carioferinas/genética , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Receptor Notch1/genética , Receptores Citoplasmáticos e Nucleares/genética , Reprodutibilidade dos Testes , Proteína Exportina 1RESUMO
BACKGROUND: Interferon γ (IFNγ) is considered a seminal cytokine in the pathogenesis of giant cell arteritis (GCA), but its functional role has not been investigated. We explored changes in infiltrating cells and biomarkers elicited by blocking IFNγ with a neutralising monoclonal antibody, A6, in temporal arteries from patients with GCA. METHODS: Temporal arteries from 34 patients with GCA (positive histology) and 21 controls were cultured on 3D matrix (Matrigel) and exposed to A6 or recombinant IFNγ. Changes in gene/protein expression were measured by qRT-PCR/western blot or immunoassay. Changes in infiltrating cells were assessed by immunohistochemistry/immunofluorescence. Chemotaxis/adhesion assays were performed with temporal artery-derived vascular smooth muscle cells (VSMCs) and peripheral blood mononuclear cells (PBMCs). RESULTS: Blocking endogenous IFNγ with A6 abrogated STAT-1 phosphorylation in cultured GCA arteries. Furthermore, selective reduction in CXCL9, CXCL10 and CXCL11 chemokine expression was observed along with reduction in infiltrating CD68 macrophages. Adding IFNγ elicited consistent opposite effects. IFNγ induced CXCL9, CXCL10, CXCL11, CCL2 and intracellular adhesion molecule-1 expression by cultured VSMC, resulting in increased PBMC chemotaxis/adhesion. Spontaneous expression of chemokines was higher in VSMC isolated from GCA-involved arteries than in those obtained from controls. Incubation of IFNγ-treated control arteries with PBMC resulted in adhesion/infiltration by CD68 macrophages, which did not occur in untreated arteries. CONCLUSIONS: Our ex vivo system suggests that IFNγ may play an important role in the recruitment of macrophages in GCA by inducing production of specific chemokines and adhesion molecules. Vascular wall components (ie, VSMC) are mediators of these functions and may facilitate progression of inflammatory infiltrates through the vessel wall.
Assuntos
Quimiocinas CXC/metabolismo , Arterite de Células Gigantes/imunologia , Interferon gama/antagonistas & inibidores , Macrófagos/imunologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocinas CXC/genética , Quimiotaxia/imunologia , Regulação para Baixo/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/biossíntese , Interferon gama/farmacologia , Masculino , Músculo Liso Vascular/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Artérias Temporais/imunologia , Técnicas de Cultura de TecidosRESUMO
Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.
Assuntos
Evolução Clonal/genética , Variação Genética , Genoma Humano/genética , Linfoma de Célula do Manto/genética , Mutação/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sequência de Bases , Ciclina D1/genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Célula do Manto/fisiopatologia , Análise em Microsséries , Dados de Sequência Molecular , Receptor Notch2/genética , Receptor 2 Toll-Like/genéticaRESUMO
Mantle cell lymphoma (MCL) is one of the most aggressive lymphoid neoplasms whose pathogenesis is not fully understood. The neural transcription factor SOX11 is overexpressed in most MCL but is not detected in other mature B-cell lymphomas or normal lymphoid cells. The specific expression of SOX11 in MCL suggests that it may be an important element in the development of this tumor, but its potential function is not known. Here, we show that SOX11 promotes tumor growth in a MCL-xenotransplant mouse model. Using chromatin immunoprecipitation microarray analysis combined with gene expression profiling upon SOX11 knockdown, we identify target genes and transcriptional programs regulated by SOX11 including the block of mature B-cell differentiation, modulation of cell cycle, apoptosis, and stem cell development. PAX5 emerges as one of the major SOX11 direct targets. SOX11 silencing downregulates PAX5, induces BLIMP1 expression, and promotes the shift from a mature B cell into the initial plasmacytic differentiation phenotype in both primary tumor cells and an in vitro model. Our results suggest that SOX11 contributes to tumor development by altering the terminal B-cell differentiation program of MCL and provide perspectives that may have clinical implications in the diagnosis and design of new therapeutic strategies.
Assuntos
Linfócitos B/fisiologia , Diferenciação Celular/genética , Linfoma de Célula do Manto/genética , Fator de Transcrição PAX5/genética , Fatores de Transcrição SOXC/fisiologia , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/fisiopatologia , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Invasividade Neoplásica , Fator de Transcrição PAX5/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transplante HeterólogoRESUMO
Testicular large B-cell lymphoma (TLBCL) is an infrequent and aggressive lymphoma arising in an immune-privileged site and has recently been recognized as a distinct entity from diffuse large B-cell lymphoma (DLBCL). We describe the genetic features of TLBCL and compare them with published series of nodal DLBCL and primary large B-cell lymphomas of the CNS (PCNSL). We collected 61 patients with TLBCL. We performed targeted next-generation sequencing, copy number arrays, and fluorescent in situ hybridization to assess chromosomal rearrangements in 40 cases with available material. Seventy percent of the cases showed localized stages. BCL6 rearrangements were detected in 36% of cases, and no concomitant BCL2 and MYC rearrangements were found. TLBCL had fewer copy number alterations (p < 0.04) but more somatic variants (p < 0.02) than nodal DLBCL and had more frequent 18q21.32-q23 (BCL2) gains and 6q and 9p21.3 (CDKN2A/B) deletions. PIM1, MYD88 L265P , CD79B, TBL1XR1, MEF2B, CIITA, EP300, and ETV6 mutations were more frequent in TLBCL, and BCL10 mutations in nodal DLBCL. There were no major genetic differences between TLBCL and PCNSL. Localized or disseminated TLBCL displayed similar genomic profiles. Using LymphGen, the majority of cases were classified as MCD. However, we observed a subgroup of patients classified as BN2, both in localized and disseminated TLBCL, suggesting a degree of genetic heterogeneity in the TLBCL genetic profile. TLBCL has a distinctive genetic profile similar to PCNSL, supporting its recognition as a separate entity from DLBCL and might provide information to devise targeted therapeutic approaches.
RESUMO
Mantle cell lymphoma (MCL) is a B-cell neoplasm with an aggressive clinical behavior characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. To clarify the potential contribution of altered DNA methylation in the development and/or progression of MCL, we performed genome-wide methylation profiling of a large cohort of primary MCL tumors (n = 132), MCL cell lines (n = 6) and normal lymphoid tissue samples (n = 31), using the Infinium HumanMethylation27 BeadChip. DNA methylation was compared to gene expression, chromosomal alterations and clinicopathological parameters. Primary MCL displayed a heterogeneous methylation pattern dominated by DNA hypomethylation when compared to normal lymphoid samples. A total of 454 hypermethylated and 875 hypomethylated genes were identified as differentially methylated in at least 10% of primary MCL. Annotation analysis of hypermethylated genes recognized WNT pathway inhibitors and several tumor suppressor genes as frequently methylated, and a substantial fraction of these genes (22%) showed a significant downregulation of their transcriptional levels. Furthermore, we identified a subset of tumors with extensive CpG methylation that had an increased proliferation signature, higher number of chromosomal alterations and poor prognosis. Our results suggest that a subset of MCL displays a dysregulation of DNA methylation characterized by the accumulation of CpG hypermethylation highly associated with increased proliferation that may influence the clinical behavior of the tumors.
Assuntos
Ilhas de CpG , Metilação de DNA , Linfoma de Célula do Manto/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Linfoma de Célula do Manto/patologia , Via de Sinalização Wnt/fisiologiaRESUMO
CONTEXT.: Despite their stromal origin, follicular dendritic cells (FDCs) share many functions with hematopoietic system cells. FDC neoplasms are currently classified by the World Health Organization along with those of a histiocytic nature. However, the molecular alterations driving oncogenesis in FDC sarcomas (FDCSs) are beginning to be unveiled and do not seem to concur with those described in histiocytic neoplasms, namely MAPK pathway activation. OBJECTIVE.: To identify molecular alterations driving tumorigenesis in FDCS. DESIGN.: We investigated the role of MYC and TP53 in FDC-derived tumor oncogenesis and assessed comprehensively the status of the MAPK pathway in 16 FDCSs, 6 inflammatory pseudotumor (IPT)-like FDCSs, and 8 IPTs. RESULTS.: MYC structural alterations (both amplifications and rearrangements) were identified in 5 of 14 FDCSs (35.7%), all associated with MYC overexpression. TP53 mutations were identified in 4 of 14 FDCSs (28.6%), all of which displayed intense and diffuse p53 expression. None of these alterations were identified in any IPT-like FDCSs or in IPT cases. No MAPK pathway gene alterations were identified in any of the cases studied. CONCLUSIONS.: The presence of MYC and TP53 alterations and the lack of association with Epstein-Barr virus segregate classical FDCS from IPT-like FDCS, pointing at different oncogenic mechanisms in both entities. Our results suggest a possible oncogenic role of MYC and TP53 alterations in FDCS. The absence of MAPK pathway alterations confirms the lack of a significant role of this pathway in the oncogenesis of FDC-derived neoplasms.
Assuntos
Sarcoma de Células Dendríticas Foliculares , Infecções por Vírus Epstein-Barr , Sarcoma , Humanos , Carcinogênese/genética , Sarcoma de Células Dendríticas Foliculares/genética , Sarcoma de Células Dendríticas Foliculares/patologia , Herpesvirus Humano 4/genética , Mutação , Proteína Supressora de Tumor p53/genéticaRESUMO
The genetic mechanisms associated with splenic marginal zone lymphoma (SMZL) transformation are not well defined. We studied 41 patients with SMZL that eventually underwent large B-cell lymphoma transformation. Tumor material was obtained either only at diagnosis (9 patients), at diagnosis and transformation (18 patients), and only at transformation (14 patients). Samples were categorized in 2 groups: (1) at diagnosis (SMZL, n = 27 samples), and (2) at transformation (SMZL-T, n = 32 samples). Using copy number arrays and a next-generation sequencing custom panel, we identified that the main genomic alterations in SMZL-T involved TNFAIP3, KMT2D, TP53, ARID1A, KLF2, 1q gains, and losses of 9p21.3 (CDKN2A/B) and 7q31-q32. Compared with SMZL, SMZL-T had higher genomic complexity, and higher incidence of TNFAIP3 and TP53 alterations, 9p21.3 (CDKN2A/B) losses, and 6p gains. SMZL and SMZL-T clones arose by divergent evolution from a common altered precursor cell that acquired different genetic alterations in virtually all evaluable cases (92%, 12 of 13 cases). Using whole-genome sequencing of diagnostic and transformation samples in 1 patient, we observed that the SMZL-T sample carried more genomic aberrations than the diagnostic sample, identified a translocation t(14;19)(q32;q13) present in both samples, and detected a focal B2M deletion due to chromothripsis acquired at transformation. Survival analysis showed that KLF2 mutations, complex karyotype, and International Prognostic Index score at transformation were predictive of a shorter survival from transformation (P = .001; P = .042; and P = .007; respectively). In summary, SMZL-T are characterized by higher genomic complexity than SMZL, and characteristic genomic alterations that could represent key players in the transformation event.
Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Neoplasias Esplênicas , Humanos , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/patologia , Mutação , Translocação Genética , Linfoma Difuso de Grandes Células B/genética , Leucemia Linfocítica Crônica de Células B/genéticaRESUMO
Intravascular large B-cell lymphoma (IVLBCL) is an uncommon lymphoma with an aggressive clinical course characterized by selective growth of tumor cells within the vessels. Its pathogenesis is still uncertain and there is little information on the underlying genomic alterations. In this study, we performed a clinicopathologic and next-generation sequencing analysis of 15 cases of IVLBCL using a custom panel for the detection of alterations in 68 recurrently mutated genes in B-cell lymphomagenesis. Six patients had evidence of hemophagocytic syndrome. Four patients presented concomitantly a solid malignancy. Tumor cells outside the vessels were observed in 7 cases, 2 with an overt diffuse large B-cell cell lymphoma. In 4 samples, tumor cells infiltrated lymphatic vessel in addition to blood capillaries. Programmed death-ligand 1 (PD-L1) was positive in tumor cells in 4 of 11 evaluable samples and in macrophages intermingled with tumor cells in 8. PD-L1 copy number gains were identified in a higher proportion of cases expressing PD-L1 than in negative tumors. The most frequently mutated gene was PIM1 (9/15, 60%), followed by MYD88L265P and CD79B (8/15, 53% each). In 6 cases, MYD88L265P and CD79B mutations were detected concomitantly. We also identified recurrent mutations in IRF4 , TMEM30A , BTG2 , and ETV6 loci (4/15, 27% each) and novel driver mutations in NOTCH2 , CCND3 , and GNA13 , and an IRF4 translocation in 1 case each. The mutational profile was similar in patients with and without evidence of hemophagocytic syndrome and in cases with or without dissemination of tumor cells outside the vessels. Our results confirm the relevance of mutations in B-cell receptor/nuclear factor-κB signaling and immune escape pathways in IVLBCL and identify novel driver alterations. The similar mutational profile in tumors with extravascular dissemination suggests that these cases may also be considered in the spectrum of IVLBCL.
Assuntos
Proteínas de Checkpoint Imunológico , Linfo-Histiocitose Hemofagocítica , Linfoma Difuso de Grandes Células B , NF-kappa B , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Genômica , Proteínas Imediatamente Precoces/genética , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismoRESUMO
UNLABELLED: Low bone formation is considered to be the main feature in osteoporosis associated with cholestatic and end-stage liver diseases, although the consequences of retained substances in chronic cholestasis on bone cells have scarcely been studied. Therefore, we analyzed the effects of bilirubin and serum from jaundiced patients on viability, differentiation, mineralization, and gene expression in the cells involved in bone formation. The experiments were performed in human primary osteoblasts and SAOS-2 human osteosarcoma cells. Unconjugated bilirubin or serum from jaundiced patients resulted in a dose-dependent decrease in osteoblast viability. Concentrations of bilirubin or jaundiced serum without effects on cell survival significantly diminished osteoblast differentiation. Mineralization was significantly reduced by exposure to 50 µM bilirubin at all time points (from -32% to -55%) and jaundiced sera resulted in a significant decrease on cell mineralization as well. Furthermore, bilirubin down-regulated RUNX2 (runt-related transcription factor 2) gene expression, a basic osteogenic factor involved in osteoblast differentiation, and serum from jaundiced patients significantly up-regulated the RANKL/OPG (receptor activator of nuclear factor-κB ligand/osteoprotegerin) gene expression ratio, a system closely involved in osteoblast-induced osteoclastogenesis. CONCLUSION: Besides decreased cell viability, unconjugated bilirubin and serum from jaundiced patients led to defective consequences on osteoblasts. Moreover, jaundiced serum up-regulates the system involved in osteoblast-induced osteoclastogenesis. These results support the deleterious consequences of increased bilirubin in advanced chronic cholestasis and in end-stage liver diseases, resulting in disturbed bone formation related to osteoblast dysfunction.
Assuntos
Bilirrubina/farmacologia , Icterícia/sangue , Osteoblastos/efeitos dos fármacos , Osteoporose/etiologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Regulação para Baixo , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteossarcoma/fisiopatologia , Ligante RANK/biossíntese , Regulação para CimaRESUMO
OBJECTIVE: Frequent genetic variants may be associated with GCA. Existing studies have analysed a limited number of candidate genes and genetic variants. To expand this information, we performed a case-control study genotyping 130 single nucleotide polymorphisms (SNPs) in 82 biopsy-proven GCA patients and 166 healthy controls from the Spanish population. METHODS: SNPs in coding and regulatory gene regions of 14 candidate genes (CCL2, CCR7, IL10, IL12A, IL1A, IL1B, IL1RN, IL6, IL8, INFG, LTA, NOS2, TNF and VEGF) were explored using the Illumina Bead Array System. Multivariate methods based on logistic regression were used for statistical analysis. RESULTS: Nine SNPs located in five genes had significant association with GCA risk (P < 0.05). These SNPs were located in the NOS2 (rs2779251), VEGF (rs1885657, rs2010963, rs699946 and rs699947), IL1RN (rs17207494), IL6 (rs7805828 and rs1546766) and CCL2 (rs1860190) genes. The strongest associations were seen for rs2779251, rs1885657 and rs2010963 (P = 2.3 × 10(-5), P = 0.0078 and P = 0.0097, respectively). The presence of the minor allele of NOS2 variant rs2779251 had a protective effect on the risk for GCA [odds ratio (OR) = 0.27, 95% CI 0.14, 0.52]. Risk alleles for three of the four SNPs in the VEGF gene (rs2010963, rs699946 and rs699947) were associated in homozygosis with increased risk (OR = 4.22, 95% CI 1.38, 12.87; OR = 9.04, 95% CI 1.58, 51.81; and OR = 2.38, 95% CI 1.05, 5.38, respectively), whereas a minor allele for the other SNP (rs1885657) had a protective effect (OR = 0.46, 95% CI 0.26, 0.84). CONCLUSION: Common genetic variants in NOS2, VEGF, IL6, ILRN1 and CCL2 genes are associated with GCA, indicating a polygenic influence on disease susceptibility.
Assuntos
Quimiocina CCL2/genética , Arterite de Células Gigantes/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-6/genética , Óxido Nítrico Sintase Tipo II/genética , Polimorfismo de Nucleotídeo Único , Fator A de Crescimento do Endotélio Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Chronic lymphocytic leukemia (CLL) cells are characterized by several chromosomal lesions. Some of these aberrations imply chromosome breaks as a result of unrepaired double strand breaks (DSBs) in the DNA. The ATM (ataxia telangiectasia-mutated) protein is the principal integrator of cellular responses to DSBs. ATM deletion is also an adverse prognostic factor in CLL. Taking this into account, we evaluated if genetic and/or epigenetic variation in the ATM gene may modulate the individual susceptibility to develop CLL. Our case-control association study was performed in a large Spanish population of 1,503 individuals, including 742 patients with CLL and 761 controls. We identified one haplotype within the ATM gene that confers an increased risk of CLL development (OR = 1.33; 95% CI: 1.10-1.60). Two polymorphisms of this ATM haplotype eliminated one CpG site each in Introns 15 and 61, causing changes in DNA methylation pattern. These data provide the first evidence for the existence of a putative "hepitype" in the ATM gene associated with CLL risk.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Idoso , Proteínas Mutadas de Ataxia Telangiectasia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Fatores de Risco , Proteínas Supressoras de Tumor/metabolismoRESUMO
High-throughput sequencing of cell-free DNA (cfDNA) has emerged as a promising noninvasive approach in lymphomas, being particularly useful when a biopsy specimen is not available for molecular analysis, as it frequently occurs in primary mediastinal large B-cell lymphoma (PMBL). We used cfDNA for genomic characterization in 20 PMBL patients by means of a custom NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for copy number analysis (CNA) in a real-life setting. Appropriate cfDNA to perform the analyses was obtained in 18/20 cases. The sensitivity of cfDNA to detect the mutations present in paired FFPE samples was 69% (95% CI: 60-78%). The mutational landscape found in cfDNA samples was highly consistent with that of the tissue, with the most frequently mutated genes being B2M (61%), SOCS1 (61%), GNA13 (44%), STAT6 (44%), NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). Overall, we observed a 75% concordance to detect CNA gains/losses between DNA microarray and low-pass WGS. The sensitivity of low-pass WGS was remarkably higher for clonal CNA (18/20, 90%) compared to subclonal alterations identified by DNA microarray. No significant associations between cfDNA amount and tumor burden or outcome were found. cfDNA is an excellent alternative source for the accurate genetic characterization of PMBL cases.