Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893461

RESUMO

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Assuntos
Carbamatos , Imidazóis , Trichomonas vaginalis , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crescimento & desenvolvimento , Imidazóis/farmacologia , Imidazóis/química , Humanos , Carbamatos/farmacologia , Carbamatos/química , Metronidazol/farmacologia , Metronidazol/química , Regulação da Expressão Gênica/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos
2.
J Enzyme Inhib Med Chem ; 38(1): 2231169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401012

RESUMO

Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/farmacologia , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Reposicionamento de Medicamentos , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
3.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630415

RESUMO

Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.


Assuntos
Neoplasias , Triose-Fosfato Isomerase , Humanos , Triose-Fosfato Isomerase/genética , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional , Ciclo Celular , Proliferação de Células
4.
Appl Microbiol Biotechnol ; 106(4): 1475-1492, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092453

RESUMO

The protease catalytic subunit of the nuclear inclusion protein A from tobacco etch virus (TEVp) is widely used to remove tags and fusion proteins from recombinant proteins. Some intrinsic drawbacks to its recombinant production have been studied for many years, such as low solubility, auto-proteolysis, and instability. Some point mutations have been incorporated in the amino acid protease sequence to improve its production. Here, a comprehensive review of each mutation reported so far has been made to incorporate them into a mutant called TEVp7M with a total of seven changes. This mutant with a His7tag at N-terminus was produced with remarkable purification yields (55 mg/L of culture) from the soluble fraction in a single step affinity purification. The stability of His7-TEVp7M was analyzed and compared with the single mutant TEVp S219V, making evident that His7-TEVp7M shows very constant thermal stability against pH variation, whereas TEVp S219V is highly sensitive to this change. The cleavage reaction was optimized by determining the amount of protease that could cleave a 100-fold excess substrate in the shortest possible time at 30 °C. Under these conditions, His7-TEVp7M was able to cleave His-tag in the buffers commonly used for affinity purification. Finally, a structural analysis of the mutations showed that four of them increased the polarity of the residues involved and, consequently, showed increased solubility of TEVp and fewer hydrophobic regions exposed to the solvent. Taken together, the seven changes studied in this work improved stability, solubility, and activity of TEVp producing enough protease to digest large amounts of tags or fusion proteins. KEY POINTS: • Production of excellent yields of a TEVp (TEVp7M) by incorporation of seven changes. • His-tag removal in an excess substrate in the common buffers used for purification. • Incorporated mutations improve polarity, stability, and activity of TEVp7M.


Assuntos
Endopeptidases , Cromatografia de Afinidade , Endopeptidases/genética , Endopeptidases/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232855

RESUMO

Beyond the problem in public health that protist-generated diseases represent, understanding the variety of mechanisms used by these parasites to interact with the human immune system is of biological and medical relevance. Giardia lamblia is an early divergent eukaryotic microorganism showing remarkable pathogenic strategies for evading the immune system of vertebrates. Among various multifunctional proteins in Giardia, arginine deiminase is considered an enzyme that plays multiple regulatory roles during the life cycle of this parasite. One of its most important roles is the crosstalk between the parasite and host. Such a molecular "chat" is mediated in human cells by membrane receptors called Toll-like receptors (TLRs). Here, we studied the importance of the 3D structure of giardial arginine deiminase (GlADI) to immunomodulate the human immune response through TLRs. We demonstrated the direct effect of GlADI on human TLR signaling. We predicted its mode of interaction with TLRs two and four by using the AlphaFold-predicted structure of GlADI and molecular docking. Furthermore, we showed that the immunomodulatory capacity of this virulent factor of Giardia depends on the maintenance of its 3D structure. Finally, we also showed the influence of this enzyme to exert specific responses on infant-like dendritic cells.


Assuntos
Giardia , Giardíase , Animais , Humanos , Hidrolases , Imunidade , Imunomodulação , Simulação de Acoplamento Molecular , Receptores Toll-Like
6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430836

RESUMO

Treatments to combat giardiasis have been reported to have several drawbacks, partly due to the drug resistance and toxicity of current antiparasitic agents. These constraints have prompted many researchers to investigate new drugs that act against protozoan parasites. Enzyme inhibition is an important means of regulating pathogen metabolism and has recently been identified as a significant alternative target in the search for new treatments. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase (G6PD::6PGL) is a bifunctional enzyme involved in the pentose phosphate pathway (PPP) in Giardia lamblia (G. lamblia). The G. lamblia enzyme is unusual since, unlike the human enzyme, it is a fused enzyme. Here, we show, through inhibition assays, that an in-house chemical library of 120 compounds and four target compounds, named CNZ-7, CNZ-8, CMC-1, and FLP-2, are potent inhibitors of the G. lamblia G6PD::6PGL fused enzyme. With a constant (k2) of 2.3, 3.2, and 2.8 M−1 s−1, respectively, they provoke alterations in the secondary and tertiary protein structure and global stability. As a novel approach, target compounds show antigiardial activity, with IC50 values of 8.7, 15.2, 15.3, and 24.1 µM in trophozoites from G. lamblia. Moreover, these compounds show selectivity against G. lamblia, since, through counter-screening in Caco-2 and HT29 human cells, they were found to have low toxicity. This finding positions these compounds as a potential and attractive starting point for new antigiardial drugs.


Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/tratamento farmacológico , Giardíase/parasitologia , Trofozoítos/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Células CACO-2
7.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558035

RESUMO

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Assuntos
Antiprotozoários , Giardia lamblia , Parasitos , Trichomonas vaginalis , Animais , Humanos , Metronidazol/farmacologia , Antiparasitários/farmacologia , Benzimidazóis/farmacologia , Antiprotozoários/farmacologia
8.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208965

RESUMO

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Assuntos
Antibacterianos/química , Proteínas de Bactérias , Inibidores Enzimáticos/química , Glucosefosfato Desidrogenase , Simulação de Acoplamento Molecular , Trichomonas vaginalis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/química , Cinética
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502400

RESUMO

Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.


Assuntos
Giardia lamblia/efeitos dos fármacos , Giardíase/tratamento farmacológico , Hidrolases/metabolismo , Animais , Antiprotozoários/farmacologia , Simulação por Computador , Cisteína/química , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Giardia lamblia/patogenicidade , Giardíase/imunologia , Tiomalato Sódico de Ouro/farmacologia , Humanos , Hidrolases/efeitos dos fármacos , Hidrolases/ultraestrutura , Omeprazol/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Rabeprazol , Tiamina/análogos & derivados , Tiamina/farmacologia , Trofozoítos/efeitos dos fármacos
10.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443540

RESUMO

Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.


Assuntos
Simulação por Computador , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Helicobacter pylori/enzimologia , Vetores Genéticos/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Helicobacter pylori/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Recombinantes/isolamento & purificação , Homologia Estrutural de Proteína
11.
Parasitol Res ; 119(4): 1337-1351, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32056023

RESUMO

Amoebiasis is a human intestinal disease caused by the parasite Entamoeba histolytica. It has been previously demonstrated that E. histolytica heat shock protein 70 (EhHSP70) plays an important role in amoebic pathogenicity by protecting the parasite from the dangerous effects of oxidative and nitrosative stresses. Despite its relevance, this protein has not yet been characterized. In this study, the EhHSP70 genes were cloned, and the two recombinant EhHSP70 proteins were expressed, purifying and biochemically characterized. Additionally, after being subjected to some host stressors, the intracellular distribution of the proteins in the parasite was documented. Two amoebic HSP70 isoforms, EhHSP70-A and EhHSP70-B, with 637 and 656 amino acids, respectively, were identified. Kinetic parameters of ATP hydrolysis showed low rates, which were in accordance with those of the HSP70 family members. Circular dichroism analysis showed differences in their secondary structures but similarities in their thermal stability. Immunocytochemistry in trophozoites detected EhHSP70 in the nuclei and cytoplasm as well as a slight overexpression when the parasites were subjected to oxidants and heat. The structural differences of amoebic HSP70s with their human counterparts may be used to design specific inhibitors to treat human amoebiasis.


Assuntos
Entamoeba histolytica/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Isoformas de Proteínas/genética , Amebíase/parasitologia , Animais , Núcleo Celular , Dicroísmo Circular , Clonagem Molecular , Citoplasma/metabolismo , Entamoeba histolytica/patogenicidade , Proteínas de Choque Térmico HSP70/classificação , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Trofozoítos/metabolismo
12.
Parasitol Res ; 119(10): 3491-3502, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886229

RESUMO

Amoebiasis is a human parasitic disease caused by Entamoeba histolytica. The parasite can invade the large intestine and other organs such as liver; resistance to the host tissue oxygen is a condition for parasite invasion and survival. Thioredoxin reductase of E. histolytica (EhTrxR) is a critical enzyme mainly involved in maintaining reduced the redox system and detoxifying the intracellular oxygen; therefore, it is necessary for E. histolytica survival under both aerobic in vitro and in vivo conditions. In the present work, it is reported that rabeprazole (Rb), a drug widely used to treat heartburn, was able to inhibit the EhTrxR recombinant enzyme. Moreover, Rb affected amoebic proliferation and several functions required for parasite virulence such as cytotoxicity, oxygen reduction to hydrogen peroxide, erythrophagocytosis, proteolysis, and oxygen and complement resistances. In addition, amoebic pre-incubation with sublethal Rb concentration (600 µM) promoted amoebic death during early liver infection in hamsters. Despite the high Rb concentration used to inhibit amoebic virulence, the wide E. histolytica pathogenic-related functions affected by Rb strongly suggest that its molecular structure can be used as scaffold to design new antiamoebic compounds with lower IC50 values.


Assuntos
Amebicidas/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/patogenicidade , Inibidores Enzimáticos/farmacologia , Rabeprazol/farmacologia , Amebicidas/uso terapêutico , Animais , Cricetinae , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/metabolismo , Entamebíase/parasitologia , Entamebíase/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Oxirredução/efeitos dos fármacos , Rabeprazol/uso terapêutico , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Virulência/efeitos dos fármacos
13.
Biochim Biophys Acta Gen Subj ; 1862(6): 1401-1409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571745

RESUMO

Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Mutação , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Triose-Fosfato Isomerase/genética
14.
Biochim Biophys Acta ; 1860(1 Pt A): 97-107, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518348

RESUMO

BACKGROUND: Proton pump inhibitors (PPIs) are extensively used in clinical practice because of their effectiveness and safety. Omeprazole is one of the best-selling drugs worldwide and, with other PPIs, has been proposed to be potential drugs for the treatment of several diseases. We demonstrated that omeprazole shows cytotoxic effects in Giardia and concomitantly inactivates giardial triosephosphate isomerase (GlTIM). Therefore, we evaluated the efficiency of commercially available PPIs to inactivate this enzyme. METHODS: We assayed the effect of PPIs on the GlTIM WT, single Cys mutants, and the human counterpart, following enzyme activity, thermal stability, exposure of hydrophobic regions, and susceptibility to limited proteolysis. RESULTS: PPIs efficiently inactivated GlTIM; however, rabeprazole was the best inactivating drug and was nearly ten times more effective. The mechanism of inactivation by PPIs was through the modification of the Cys 222 residue. Moreover, there are important changes at the structural level, the thermal stability of inactivated-GlTIM was drastically diminished and the structural rigidity was lost, as observed by the exposure of hydrophobic regions and their susceptibility to limited proteolysis. CONCLUSIONS: Our results demonstrate that rabeprazole is the most potent PPI for GlTIM inactivation and that all PPIs tested have substantial abilities to alter GITIM at the structural level, causing serious damage. GENERAL SIGNIFICANCE: This is the first report demonstrating the effectiveness of commercial PPIs on a glycolytic parasitic enzyme, with structural features well known. This study is a step forward in the use and understanding the implicated mechanisms of new antigiardiasic drugs safe in humans.


Assuntos
Desenho de Fármacos , Giardia lamblia/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Estabilidade Enzimática , Giardia lamblia/enzimologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/fisiologia
15.
Int J Mol Sci ; 16(12): 28657-68, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633385

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.


Assuntos
Variação Genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Modelos Moleculares , Conformação Molecular , Mutação , Catálise , Ativação Enzimática , Expressão Gênica , Glucosefosfato Desidrogenase/metabolismo , Humanos , Cinética , Estabilidade Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Termodinâmica
16.
Int J Mol Sci ; 16(1): 1293-311, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25574602

RESUMO

Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Gluconacetobacter/enzimologia , Acetatos/análise , Álcool Desidrogenase/química , Álcool Desidrogenase/isolamento & purificação , Aldeídos/análise , Sequência de Aminoácidos , Biocatálise , Radioisótopos de Carbono/química , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oxirredução , Desnaturação Proteica , Temperatura
17.
Biochim Biophys Acta ; 1834(12): 2702-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056040

RESUMO

The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.


Assuntos
Substituição de Aminoácidos , Mutação de Sentido Incorreto , Multimerização Proteica , Proteólise , Triose-Fosfato Isomerase/química , Anemia Hemolítica Congênita não Esferocítica/enzimologia , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Estabilidade Enzimática/genética , Humanos , Estrutura Quaternária de Proteína , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
18.
Proteins ; 82(2): 323-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23966267

RESUMO

It is generally assumed that the amino acids that exist in all homologous enzymes correspond to residues that participate in catalysis, or that are essential for folding and stability. Although this holds for catalytic residues, the function of conserved noncatalytic residues is not clear. It is not known if such residues are of equal importance and have the same role in different homologous enzymes. In humans, the E104D mutation in triosephosphate isomerase (TIM) is the most frequent mutation in the autosomal diseases named "TPI deficiencies." We explored if the E104D mutation has the same impact in TIMs from four different organisms (Homo sapiens, Giardia lamblia, Trypanosoma cruzi, and T. brucei). The catalytic properties were not significantly affected by the mutation, but it affected the rate and extent of formation of active dimers from unfolded monomers differently. Scanning calorimetry experiments indicated that the mutation was in all cases destabilizing, but the mutation effect on rates of irreversible denaturation and transition-state energetics were drastically dependent on the TIM background. For instance, the E104D mutation produce changes in activation energy ranging from 430 kJ mol(-1) in HsTIM to -78 kJ mol(-1) in TcTIM. Thus, in TIM the role of a conserved noncatalytic residue is drastically dependent on its molecular background. Accordingly, it would seem that because each protein has a particular sequence, and a distinctive set of amino acid interactions, it should be regarded as a unique entity that has evolved for function and stability in the organisms to which it belongs.


Assuntos
Proteínas de Protozoários/química , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Entropia , Estabilidade Enzimática , Giardia lamblia/enzimologia , Humanos , Cinética , Modelos Moleculares , Desdobramento de Proteína , Proteínas de Protozoários/genética , Homologia Estrutural de Proteína , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia
19.
Antimicrob Agents Chemother ; 58(12): 7072-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223993

RESUMO

Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Giardia lamblia/efeitos dos fármacos , Omeprazol/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Triose-Fosfato Isomerase/antagonistas & inibidores , Trofozoítos/efeitos dos fármacos , Albendazol/farmacologia , Cultura Axênica , Cisteína/química , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Giardia lamblia/enzimologia , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/isolamento & purificação , Humanos , Metronidazol/farmacologia , Mutação , Nitrocompostos , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Tiazóis/farmacologia , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Trofozoítos/enzimologia , Trofozoítos/crescimento & desenvolvimento
20.
Int J Mol Sci ; 15(11): 21179-201, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25407525

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The k(cat) (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Mutação , Estabilidade Enzimática , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Humanos , Modelos Moleculares , Fenótipo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA