RESUMO
We investigated the function of the newly discovered myosin family protein myosin 18A (Myo18A) in Ab-mediated immunity by generating B cell-conditional Myo18A-deficient mice. Myo18A deficiency led to expansion of bone marrow progenitor B cells and mature B cells in secondary lymphoid organs. Myo18A-deficient mice displayed serum IgM hyperglobulinemia and increased splenic IgM-secreting cells, with older mice switching to IgG1 hyperglobulinemia and autoantibody development. Immunization of Myo18A-deficient mice with inactivated influenza virus led to development of more potent neutralizing Abs against the major Ag hemagglutinin, associated with persistent accumulation of Ag-specific germinal center B cells and more Ag-specific bone marrow plasma cells. In vitro stimulation with TLR7 and BCR ligands revealed a greater ability of Myo18A-deficient B cells to differentiate into Ab-secreting cells, associated with higher AID and Blimp-1 expression. Overall, our study demonstrates that Myo18A is a novel negative regulator of B cell homeostasis, differentiation, and humoral immunity.
Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Imunidade Humoral/imunologia , Miosinas/imunologia , Animais , Diferenciação Celular/imunologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miosinas/deficiênciaRESUMO
Because of microbicide noncompliance and lack of a durable, highly effective vaccine, a combined approach might improve HIV prophylaxis. We tested whether a vaccine-microbicide combination would enhance protection against SIV infection in rhesus macaques. Four macaque groups included vaccine only, vaccine-microbicide, microbicide only, and controls. Vaccine groups were primed twice mucosally with replicating adenovirus type 5 host range mutant SIV env/rev, gag, and nef recombinants and boosted twice i.m. with SIV gp120 proteins in alum. Controls and the microbicide-only group received adenovirus type 5 host range mutant empty vector and alum. The microbicide was SAMT-247, a 2-mercaptobenzamide thioester that targets the viral nucleocapsid protein NCp7, causing zinc ejection and preventing RNA encapsidation. Following vaccination, macaques were challenged intravaginally with repeated weekly low doses of SIVmac251 administered 3 h after application of 0.8% SAMT-247 gel (vaccine-microbicide and microbicide groups) or placebo gel (vaccine-only and control groups). The microbicide-only group exhibited potent protection; 10 of 12 macaques remained uninfected following 15 SIV challenges. The vaccine-only group developed strong mucosal and systemic humoral and cellular immunity but did not exhibit delayed acquisition compared with adjuvant controls. However, the vaccine-microbicide group exhibited significant acquisition delay compared with both control and vaccine-only groups, indicating further exploration of the combination strategy is warranted. Impaired protection in the vaccine-microbicide group compared with the microbicide-only group was not attributed to a vaccine-induced increase in SIV target cells. Possible Ab-dependent enhancement will be further investigated. The potent protection provided by SAMT-247 encourages its movement into human clinical trials.
Assuntos
Anti-Infecciosos/farmacologia , Benzamidas/farmacologia , Macaca mulatta/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Adenoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Células Cultivadas , Feminino , Produtos do Gene gag/imunologia , Vetores Genéticos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Macaca mulatta/virologia , Glicoproteínas de Membrana/imunologia , Projetos Piloto , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/imunologiaRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and -RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglobulin fractions using a vesicular stomatitis pseudovirus assay. RESULTS: Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 (COVID-19).
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/terapia , Imunoglobulina A/sangue , Imunoglobulina M/sangue , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Teste para COVID-19 , Feminino , Humanos , Imunização Passiva , Imunoglobulina A/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/uso terapêutico , Imunoglobulina M/uso terapêutico , Masculino , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19RESUMO
NK cells are essential for controlling viral infections. We investigated NK cell and innate lymphoid cell (ILC) dynamics and function in rhesus macaque rectal tissue and blood following mucosal priming with replicating adenovirus (Ad)-SIV recombinants, systemic boosting with SIV envelope protein, and subsequent repeated low-dose intravaginal SIV exposures. Mucosal memory-like NK and ILC subsets in rectal and vaginal tissues of chronically infected macaques were also evaluated. No differences in NK cell or ILC frequencies or cytokine production were seen between vaccinated and Ad-empty/alum controls, suggesting responses were due to the Ad-vector and alum vaccine components. Mucosal NKp44+ ILCs increased postvaccination and returned to prelevels postinfection. The vaccine regimen induced mucosal SIV-specific Ab, which mediated Ab-dependent cellular cytotoxicity and was correlated with mucosal NKp44+CD16+ ILCs. Postvaccination NKp44+ and NKp44+IL-17+ ILC frequencies were associated with delayed SIV acquisition and decreased viremia. In chronically SIV-infected animals, NKp44+ ILCs negatively correlated with viral load, further suggesting a protective effect, whereas, NKG2A- NKp44- double-negative ILCs positively correlated with viral load, indicating a pathogenic role. No such associations of circulating NK cells were seen. Δγ NK cells in mucosal tissues of chronically infected animals exhibited impaired cytokine production compared with non-Δγ NK cells but responded to anti-gp120 Ab and Gag peptides, whereas non-Δγ NK cells did not. Mucosal Δγ NKp44+ and Δγ DN cells were similarly associated with protection and disease progression, respectively. Thus, the data suggest NKp44+ ILCs and Δγ cells contribute to SIV infection outcomes. Vaccines that promote mucosal NKp44+ and suppress double-negative ILCs are likely desirable.
Assuntos
Subpopulações de Linfócitos/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/análise , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Feminino , Imunidade Inata , Imunidade nas Mucosas , Células Matadoras Naturais/imunologia , Macaca mulatta , Reto/imunologia , Vacinas contra a SAIDS/imunologia , Vacinação , Vagina/imunologiaRESUMO
It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteínas de Membrana/imunologia , Células A549 , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Intestinal ischemia/reperfusion (I/R) injury is a relatively common pathological condition that can lead to multi-organ failure and mortality. Regulatory mechanism for this disease is poorly understood, although it is established that circulating pathogenic natural IgM, which is primarily produced by B1a cells outside of the peritoneal cavity, are integrally involved. CD6 was originally identified as a marker for T cells and was later found to be present on some subsets of B cells in humans; however, whether CD6 plays any role in intestinal I/R-induced injury and, if so, the underlying mechanisms, remain unknown. Here we report that CD6-/- mice were significantly protected from intestinal inflammation and mucosal damage compared with WT mice in a model of intestinal I/R-induced injury. Mechanistically, we found that CD6 was selectively expressed on B1 cells outside of the bone marrow and peritoneal cavity and that pathogenic natural IgM titers were reduced in the CD6-/- mice in association with significantly decreased B1a cell population. Our results reveal an unexpected role of CD6 in the pathogenesis of intestinal IR-induced injury by regulating the self-renewal of B1a cells.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos B/imunologia , Imunoglobulina M/imunologia , Enteropatias/imunologia , Mucosa Intestinal/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos B/patologia , Modelos Animais de Doenças , Enteropatias/genética , Enteropatias/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologiaRESUMO
The ezrin-radixin-moesin proteins regulate B lymphocyte activation via their effect on BCR diffusion and microclustering. This relies on their ability to dynamically tether the plasma membrane with actin filaments that is in turn facilitated by phosphorylation of the conserved threonine residue in the actin-binding domain. In this study, we describe a novel function of ezrin in regulating JNK activation that is mediated by phosphorylation of a tyrosine (Y353) residue that is unconserved with moesin and radixin. BCR, but not CD40, TLR4, or CXCR5 stimulation, induced phosphorylation of ezrin at Y353 in mouse splenic B cells. Ezrin existed in a preformed complex with Syk in unstimulated B cells and underwent Syk-dependent phosphorylation upon anti-IgM stimulation. Y353-phosphorylated ezrin colocalized with the BCR within minutes of stimulation and cotrafficked with the endocytosed BCRs through the early and late endosomes. The T567 residue of ezrin was rephosphorylated in late endosomes and at the plasma membrane at later times of BCR stimulation. Expression of a nonphosphorylatable Y353F mutant of ezrin specifically impaired JNK activation. BCR crosslinking induced the association of Y353-phosphorylated ezrin with JNK and its kinase MAPKK7, as well as spatial colocalization with phosphorylated JNK in the endosomes. The yellow fluorescent protein-tagged Y353F mutant displayed reduced colocalization with the endocytosed BCR as compared with wild-type ezrin-yellow fluorescent protein. Taken together, our data identify a novel role for ezrin as a spatial adaptor that couples JNK signaling components to the BCR signalosome, thus facilitating JNK activation.
Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Linfócitos B/metabolismo , Proteínas do Citoesqueleto/genética , MAP Quinase Quinase 4/genética , Receptores de Antígenos de Linfócitos B/genética , Actinas/genética , Actinas/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Proteínas de Bactérias , Cálcio/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Endocitose , Endossomos/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes , Ativação Linfocitária , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transporte Proteico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk , Tirosina/metabolismoRESUMO
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
RESUMO
Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.
RESUMO
Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Saliva/virologia , VacinaçãoRESUMO
Vaccine strategies targeting the mucosal portal of entry may prevent HIV acquisition and systemic infection. Macrophages in cervicovaginal compartments are one of the first cell types to encounter virus upon vaginal exposure. Their activation can lead to recruitment of additional macrophages and CD4+ T-cells susceptible to viral infection. However, they are also critical in providing early protection against invading pathogens. Therefore, understanding their response to immunization is important for vaccine design. We immunized rhesus macaques twice mucosally with replicating adenovirus (Ad) SIV recombinants, followed by two intramuscular boosts with SIV gp120 protein. Macaques were subsequently challenged intravaginally with repeated low doses of SIVmac251. Using flow cytometry, we evaluated responses of cervicovaginal macrophages (CVM) and alveolar macrophages (AM) in bronchoalveolar lavage as initial immunization was to the upper respiratory tract. The frequency of CVM increased over the course of immunization; however, CCR5 expression significantly decreased. Significantly increased expression of the chemokines CCL3 (p < 0.01), CCL4, CCL5, and CXCL8 (p < 0.0001 for all) on CVM was seen post-1st Ad but their expression significantly decreased post-2nd boost. CD4+ T-cell frequency in the cervical mucosa remained unchanged. CVM FcγRIII expression was significantly increased at all time points post-immunization compared to naïve animals. FcγRIII expression post-2nd Ad positively correlated with the number of challenges needed for infection (r = 0.68; p = 0.0051). Vaccination increased AM FcγRIII expression which post-2nd boost correlated with antibody-dependent phagocytosis. Activation of AMs was evident by increased expression of CD40 and CD80 post-2nd Ad compared to naïve macaques. APRIL expression also significantly increased post-2nd Ad and correlated with B cell frequency in bronchoalveolar lavage (BAL) (r = 0.73; p = 0.0019) and total IgG in BAL-fluid (r = 0.53; p = 0.047). B cells cultured with SIV gp120-stimulated AM supernatant from vaccinated macaques exhibited significant increases in B cell activation markers CD38 and CD69 compared to B cells cultured alone or with AM supernatant from unvaccinated macaques. Overall, the vaccine regimen did not induce recruitment of susceptible cells to the vaginal mucosa but increased CVM FcγRIII expression which correlated with delayed SIV acquisition. Further, immunization induced expression of AM cytokines, including those associated with providing B cell help.
Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Colo do Útero/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/imunologia , Mucosa/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Vagina/imunologia , Proteínas do Envelope Viral/imunologia , Adenoviridae/genética , Animais , Anticorpos Antivirais/metabolismo , Citocinas/metabolismo , Resistência à Doença , Feminino , Humanos , Imunização Secundária , Macaca mulatta , Vacinas SintéticasRESUMO
Mucosal-associated invariant T (MAIT) cells help combat opportunistic infections. Thus, MAIT cells are of interest in HIV/SIV vaccination and infection. We investigated MAIT cell dynamics and function in rhesus macaque blood and bronchoalveolar lavage (BAL) following mucosal adenovirus (Ad)-SIV recombinant priming, intramuscular SIV envelope boosting and infection following repeated low-dose intravaginal SIV exposures. Increased frequencies of blood MAIT cells over the course of vaccination were observed, which were maintained even 12-weeks post-SIV infection. BAL MAIT cells only increased after the first Ad immunization. Vaccination increased MAIT cell levels in blood and BAL expressing the antiviral cytokine IFN-γ and TNF-α and the proliferation marker Ki67. Upon T cell-specific α-CD3, α-CD28 stimulation, MAIT cells showed a greater capacity to secrete cytokines/chemokines associated with help for B cell activation, migration and regulation compared to CD3+MR1- cells. Culture of MAIT cell supernatants with B cells led to greater tissue like memory B cell frequencies. MAIT cell frequencies in blood and BAL correlated with SIV-specific antibody levels in rectal secretions and with SIV-specific tissue resident memory B cells. Overall, SIV vaccination influenced MAIT cell frequency and functionality. The potential for MAIT cells to provide help to B cells was evident during both vaccination and infection.
Assuntos
Linfócitos B/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinação/veterinária , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Interferon gama/metabolismo , Antígeno Ki-67/metabolismo , Estudos Longitudinais , Ativação Linfocitária , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: SARS-CoV-2 has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and - RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin (Ig) isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific Ig isotypes in convalescent and acute plasma/sera using a multiplex bead assay. We also determined virus neutralization activities in plasma, sera, and purified Ig fractions using a VSV pseudovirus assay. RESULTS: Spike- and RBD-specific IgM, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM and IgA are critical components of convalescent plasma used for COVID-19 treatment.
RESUMO
HIV infected individuals have been shown to be pre-disposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in lung innate immunity, but contradictory results have been reported regarding their functionality following HIV infection. Here, using the SIV rhesus macaque model, we document the effect of SIV infection on the phenotypic and functional properties of AMs. Following infection with SIVmac251, AMs in bronchoalveolar lavage (BAL) sampled over 2- to 20-weeks post-infection (wpi) were compared to those in BAL samples from naïve macaques. AM expression of proinflammatory cytokines TNF-α, IL-6, IL-1ß, and chemokine RANTES drastically increased 2-wpi compared to AMs of naïve macaques (p < 0.0001 for all), but dropped significantly with progression to chronic infection. Phagocytic activity of AMs 2-and 4-wpi was elevated compared to AMs of naive animals (p = 0.0005, p = 0.0004, respectively) but significantly decreased by 12-wpi (p = 0.0022, p = 0.0019, respectively). By 20-wpi the ability of AMs from chronically infected animals to perform SIV-specific antibody-dependent phagocytosis (ADP) was also diminished (p = 0.028). Acute SIV infection was associated with increased FcγRIII expression which subsequently declined with disease progression. Frequency of FcγRIII+ AMs showed a strong trend toward correlation with SIV-specific ADP, and at 2-wpi FcγRIII expression negatively correlated with viral load (r = -0.6819; p = 0.0013), suggesting a contribution to viremia control. Importantly, PD-1 was found to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r = 0.8266; p = 0.058), indicating that similar to over-expression on T-cells, PD-1 expression on AMs may also be associated with disease progression. Further, AMs predominantly expressed PD-L2, which remained consistent over the course of infection. PD-1 blockade enhanced SIV-specific ADP by AMs from chronic infection indicating that the PD-1/PD-L2 pathway may modulate functional activity of AMs at that stage. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Assuntos
Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Macrófagos Alveolares/imunologia , Receptor de Morte Celular Programada 1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Doença Crônica , Feminino , Macaca mulatta , Macrófagos Alveolares/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologiaRESUMO
Inducing strong mucosal immune responses by vaccination is important for providing protection against simian immunodeficiency virus (SIV). A replicating adenovirus type 5 host range mutant vector (Ad5hr) expressing SIV proteins induced mucosal immune responses in rectal tissue associated with delayed SIV acquisition in female rhesus macaques, but the initial mechanisms leading to the induced immunity have not been elucidated. As dendritic cells (DCs) are known to orchestrate both innate and adaptive effector immune cell responses, we investigated their role here. Rhesus macaques were immunized twice mucosally with a replicating Ad5hr expressing SIV Env, Gag, and Nef (Ad-SIV) or empty Ad5hr vector (Ad-Empty). DC subsets and their activation were examined in rectal tissue, blood, and LNs at 3 timepoints after each immunization. Plasmacytoid DCs, myeloid DCs, and Langerhans cells were significantly increased in the rectal mucosa, but only myeloid DCs were significantly increased in blood post-immunizations. All rectal DC subsets showed increased frequencies of cells expressing activation markers and cytokines post-immunization, blood DCs showed mixed results, and LN DCs showed few changes. Rectal DCs responded strongly to the vector rather than expressed SIV antigens, but rectal DC frequencies positively correlated with induced rectal antigen-specific memory T and B cells. These correlations were confirmed by in vitro co-cultures showing that rectal Ad-SIV DCs induced proliferation and antigen-specific cytokine production by autologous naïve T cells. Our results highlight the rapid response of DCs to Ad immunization and their role in mucosal immune activation and identify initial cellular mechanisms of the replicating Ad-SIV vaccine in the rhesus macaque model.
Assuntos
Adenovírus Humanos , Células Dendríticas/imunologia , Imunidade nas Mucosas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/metabolismo , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunização , Esquemas de Imunização , Macaca mulatta , Mucosa/imunologia , Mucosa/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Vírus da Imunodeficiência Símia/genética , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
B1 cells spontaneously produce protective natural antibodies which provide the first line of defense against a variety of pathogens. Although these natural antibodies share similar autoreactive features with several HIV-1 broadly neutralizing antibodies, the role of B1 cells in HIV/SIV disease progression is unknown. We report the presence of human-like B1 cells in rhesus macaques. During chronic SIV infection, we found that the frequency of splenic CD11b+ B1 cells positively correlated with plasma SIV viral load and exhausted T cells. Mechanistically, we discovered that splenic CD11b+ B1 cells express PD-L2 and IL-10, and were able to induce PD-1 upregulation on CD4+ T cells in vitro. These findings suggest that splenic CD11b+ B1 cells may contribute to the regulation of SIV plasma viral load by enhancing T cell exhaustion. Therefore, understanding the mechanisms that govern their function in rhesus macaques may lead to novel therapeutic strategies for impeding HIV/SIV disease progression.
Assuntos
Subpopulações de Linfócitos B/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Baço/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Progressão da Doença , Feminino , Macaca mulatta , Carga Viral/métodosRESUMO
Effective CD8+ T-cell responses play an important role in determining the course of SIV/HIV viral infection. Here we identified a unique population of dysfunctional CD8+ T-cells in lymphoid tissues and bronchoalveolar lavage (BAL) of rhesus macaques with chronic SIV infection characterized by co-expression of CD6 and PD-1. The frequency of CD6 and PD-1 co-expressing CD8+ T-cells was significantly increased in lymphoid tissues and BAL during chronic SIV infection compared to pre-infection levels. These CD6+PD-1+CD8+ T-cells displayed impaired proliferation, cytokine secretion and cytotoxicity compared to their CD6-PD-1+CD8+ T cell counterparts. The frequency of CD8+PD-1+ and CD8+CD6-PD-1+ T-cells in the lymph node and bone marrow did not correlate with SIV viral load, whereas the frequency of CD8+CD6+PD-1+ T-cells positively correlated with SIV viral load in these tissues highlighting the contribution of CD6 to disease progression. CD6+PD-1+CD8+ T-cells expressed elevated levels of SHP2 phosphatase compared to CD6-PD-1+CD8+ T-cells providing a potential mechanism by which CD6 may induce T-cell dysfunction during chronic SIV infection. Combined targeting of CD6 and PD-1 effectively revived the CD8+ T-cell proliferative response in vitro suggesting a strategy for potential therapeutic benefit.
Assuntos
Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Expressão Gênica , Receptor de Morte Celular Programada 1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores , Contagem de Linfócito CD4 , Citocinas/metabolismo , Progressão da Doença , Feminino , Imunofenotipagem , Macaca mulatta , Complexo Principal de Histocompatibilidade/genética , Masculino , Receptor de Morte Celular Programada 1/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga ViralRESUMO
OBJECTIVE: To determine if deficiency of CD6, a cell surface protein on lymphocytes that alters natural antibody production, increases atherosclerosis in ApoE-deficient mice fed a chow or a western-type diet. RESULTS: We compared cholesterol levels, IgM, B1a cells, and aortic root lesion areas in ApoE-deficient vs. CD6/ApoE double deficient mice. Feeding the high-fat western type diet increased all parameters, except for B1a cell numbers decreased. Sex also had an effect on many parameters with males having increased body weights, higher high density lipoprotein cholesterol, higher B1a cells, but smaller atherosclerotic lesions if chow fed mice; however, this sex effect on atherosclerosis was absent in mice fed the western-type diet. CD6 deficiency had no effect on atherosclerosis in both male and female mice on either diet. Thus, loss of CD6 on lymphocytes did not lead to expected reductions in B1a cells and protective IgM levels, and in turn did not alter atherosclerosis in mice.