Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461469

RESUMO

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

2.
Oncotarget ; 6(1): 288-304, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25481872

RESUMO

The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Subunidade 1 do Complexo Mediador/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Imunoprecipitação , Masculino , Isoformas de Proteínas/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Enzimas de Conjugação de Ubiquitina/genética
3.
Neoplasia ; 15(9): 1009-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24027426

RESUMO

Androgen deprivation therapy remains the primary treatment modality for patients with metastatic prostate cancer but is uniformly marked by progression to castration-resistant prostate cancer (CRPC) after a period of regression. Continued activation of androgen receptor (AR) signaling is attributed as one of the most important mechanisms underlying failure of therapy. Recently, the discovery of constitutively active AR splice variants (AR-Vs) adds more credence to this idea. Expression of AR-Vs in metastases portends a rapid progression of the tumor. However, the precise role of the AR-Vs in CRPC still remains unknown. ARv567es is one of the two AR variants frequently found in human CRPC xenografts and metastases. Herein, we developed a probasin (Pb) promoter-driven ARv567es transgenic mouse, Pb-ARv567es, to evaluate the role of ARv567es in both autonomous prostate growth and progression to CRPC. We found that expression of ARv567es in the prostate results in epithelial hyperplasia by 16 weeks and invasive adenocarcinoma is evident by 1 year of age. The underlying genetic cellular events involved a cell cycle-related transcriptome and differential expression of a spectrum of genes that are critical for tumor initiation and progression. These findings indicate that ARv567es could induce tumorigenesis de novo and signifies the critical role of AR-Vs in CRPC. Thus, the Pb-ARv567es mouse could provide a novel model in which the role of AR variants in prostate cancer progression can be examined.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteína de Ligação a Androgênios/genética , Animais , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Masculino , Camundongos , Camundongos Transgênicos , Metástase Neoplásica/genética , Orquiectomia , Regiões Promotoras Genéticas , Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA