Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(29): 12031-6, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19597142

RESUMO

Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8-16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS-i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Trissomia/genética , Humanos , Lactente , Metanálise como Assunto , Fenótipo
2.
Bioinformatics ; 24(19): 2143-8, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18667443

RESUMO

MOTIVATION: The ability to detect regions of genetic alteration is of great importance in cancer research. These alterations can take the form of large chromosomal gains and losses as well as smaller amplifications and deletions. The detection of such regions allows researchers to identify genes involved in cancer progression, and to fully understand differences between cancer and non-cancer tissue. The Bayesian method proposed by Barry and Hartigan is well suited for the analysis of such change point problems. In our previous article we introduced the R package bcp (Bayesian change point), an MCMC implementation of Barry and Hartigan's method. In a simulation study and real data examples, bcp is shown to both accurately detect change points and estimate segment means. Earlier versions of bcp (prior to 2.0) are O(n(2)) in speed and O(n) in memory (where n is the number of observations), and run in approximately 45 min for a sequence of length 10 000. With the high resolution of newer microarrays, the number of computations in the O(n(2)) algorithm is prohibitively time-intensive. RESULTS: We present a new implementation of the Bayesian change point method that is O(n) in both speed and memory; bcp 2.1 runs in approximately 45 s on a single processor with a sequence of length 10,000--a tremendous speed gain. Further speed improvements are possible using parallel computing, supported in bcp via NetWorkSpaces. In simulated and real microarray data from the literature, bcp is shown to quickly and accurately detect aberrations of varying width and magnitude. AVAILABILITY: The R package bcp is available on CRAN (R Development Core Team, 2008). The O(n) version is available in version 2.0 or higher, with support for NetWorkSpaces in versions 2.1 and higher.


Assuntos
Aberrações Cromossômicas , Análise de Sequência com Séries de Oligonucleotídeos , Algoritmos , Teorema de Bayes , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA