Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(6): e2300352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284435

RESUMO

In this study, the anti-inflammatory effect of dental pulp mesenchymal stem cell (MSCs) exosomes loaded to mucoadhesive hydrogel is investigated in a dental nickel hypersensitivity murine model. After culture of dental pulp MSCs in the third passage MSCs are loaded to a mucoadhesive hydrogel based on chitosan, cross-linked with genipin and modified with catechol groups. A dental nickel hypersensitivity model is created by administering NiCl2 and 10 µg mL-1 lipopolysaccharide to 4-6 week-old Balb-c mice by intradermal injection. In mice treated with dental pulp MSC exosomes and exosomes in hydrogel, interferron gamma (IFN-γ) secreting CD4+T lymphocyte ratios significantly increase compared to the untreated group (p < 0.05). IFN-γ and interleukin 10 (IL-10) expression in buccal mucosa tissue sections and IFN-γ secreting CD4+T lymphocyte ratios are found to be significantly higher in mice treated with dental pulpa MSCs (DPMSCs) exosomes and DPMSCs exosomes in hydrogel compared to the untreated group (p < 0.05). According to flow cytometry results, IL-4 secreting CD4+T lymphocytes are found to be significantly decreased in DPMSCs exosomes group compared to dental nickel hypersensitivity group (p < 0.05). Administration of DPMSCs exosomes with mucoadhesive hydrogel may be an alternative to current medication in the treatment of dental nickel hypersensitivity.


Assuntos
Polpa Dentária , Exossomos , Hidrogéis , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Níquel , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Níquel/química , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Interferon gama/metabolismo , Linfócitos T CD4-Positivos/imunologia , Interleucina-4/metabolismo
2.
Turk J Chem ; 47(6): 1529-1539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38544716

RESUMO

Quaternized chitosan (HTCC) was synthesized and characterized to increase chitosan solubility. Then HTCC was electrospun with poly (vinyl alcohol) (PVA) and prepared natural bioactive agent (Calendula officinalis) extract was loaded onto fibers for wound scaffold applications. Morphological, structural, and mechanical characterization of the produced wound scaffolds was performed and their in vitro bioactive component release behavior was investigated. As a result, it was observed that the degree of quaternization of chitosan was 0.89, and synthesized HTCC was soluble in acidic, basic, alkaline media and could be electrospun with PVA in the presence of a natural bioactive agent. The presence of HTCC increased Young's modulus and the tensile strength of the PVA scaffolds, while the presence of bioactive extract caused a decrease in Young's modulus and an increase in tensile strength. Calendula officinalis is released in a controlled and slow manner from the scaffolds within approximately 55 h. The release behavior was consistent with the Higuchi kinetic model. In this study, the effect of PVA cooperator on HTCC nanofiber production in the presence of a bioactive component was investigated for the first time. HTCC and Calendula officinalis extract were also used together for the first time in the composition of a fiber scaffold. The mechanical properties and release kinetics of these scaffolds were also investigated for the first time. According to the results, it is thought that the wound scaffolds produced have the potential to be used as a new treatment tool, especially for chronic wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA