Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 551(7678): 119-123, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29072300

RESUMO

A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms and they remain a topic of active investigation. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions.


Assuntos
Carbono/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Biomassa , Carbono/farmacologia , Meios de Cultura/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cinética , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes
2.
Mol Syst Biol ; 11(1): 784, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25678603

RESUMO

A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other 'omics' studies.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Espectrometria de Massas , Modelos Moleculares , Proteoma/genética , Proteoma/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(30): 12473-8, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21742981

RESUMO

Sequence-function relations for small RNA (sRNA)-mediated gene silencing were quantified for the sRNA RyhB and some of its mRNA targets in Escherichia coli. Numerous mutants of RyhB and its targets were generated and their in vivo functions characterized at various levels of target and RyhB expression. Although a core complementary region is required for repression by RyhB, variations in the complementary sequences of the core region gave rise to a continuum of repression strengths, correlated exponentially with the computed free energy of RyhB-target duplex formation. Moreover, sequence variations in the linker region known to interact with the RNA chaperone Hfq also gave rise to a continuum of repression strengths, correlated exponentially with the computed energy cost of keeping the linker region open. These results support the applicability of the thermodynamic model in predicting sRNA-mRNA interaction and suggest that sequences at these locations may be used to fine-tune the degree of repression. Surprisingly, a truncated RyhB without the Hfq-binding region is found to repress multiple targets of the wild-type RyhB effectively, both in the presence and absence of Hfq, even though the former is required for the activity of wild-type RyhB itself. These findings challenge the commonly accepted model concerning the function of Hfq in gene silencing-both in providing stability to the sRNAs and in catalyzing the target mRNAs to take on active conformations-and raise the intriguing question of why many endogenous sRNAs subject their functions to Hfq-dependences.


Assuntos
Escherichia coli K12/genética , Inativação Gênica , Genes Bacterianos , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Metabolismo Energético , Escherichia coli K12/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Superóxido Dismutase/genética
4.
PLoS Comput Biol ; 7(11): e1002265, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125482

RESUMO

Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions.


Assuntos
Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Biologia Computacional , Escherichia coli/fisiologia , Proteínas de Escherichia coli , Fatores de Transcrição
5.
Nat Commun ; 8(1): 1225, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089487

RESUMO

The overexpression of proteins is a major burden for fast-growing bacteria. Paradoxically, recent characterization of the proteome of Escherichia coli found many proteins expressed in excess of what appears to be optimal for exponential growth. Here, we quantitatively investigate the possibility that this overexpression constitutes a strategic reserve kept by starving cells to quickly meet demand upon sudden improvement in growth conditions. For cells exposed to repeated famine-and-feast cycles, we derive a simple relation between the duration of feast and the allocation of the ribosomal protein reserve to maximize the overall gain in biomass during the feast.


Assuntos
Meio Ambiente , Proteoma/metabolismo , Cinética , Biossíntese de Proteínas , Ribossomos/metabolismo
6.
Med Phys ; 43(1): 23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745896

RESUMO

PURPOSE: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. METHODS: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. RESULTS: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. CONCLUSIONS: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.


Assuntos
Mama , Mamografia/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Artefatos , Mama/anatomia & histologia , Lógica Fuzzy , Humanos , Imageamento Tridimensional , Tamanho do Órgão , Razão Sinal-Ruído , Pele/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA