Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 603(7903): 852-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322229

RESUMO

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3-11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14-16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17.


Assuntos
Dinossauros , Adaptação Fisiológica , Animais , Evolução Biológica , Carnivoridade , Dinossauros/anatomia & histologia , Fósseis , Mamíferos , Filogenia
2.
New Phytol ; 238(5): 2224-2235, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869439

RESUMO

Phytoliths, microscopic deposits of hydrated silica within plants, play a myriad of functional roles in extant tracheophytes - yet their evolutionary origins and the original selective pressures leading to their deposition remain poorly understood. To gain new insights into the ancestral condition of tracheophyte phytolith production and function, phytolith content was intensively assayed in a basal, morphologically conserved tracheophyte: the foxtail clubmoss Lycopodiella alopecuroides. Wet ashing was employed to perform phytolith extractions from every major anatomical region of L. alopecuroides. Phytolith occurrence was recorded, alongside abundance, morphometric information, and morphological descriptions. Phytoliths were recovered exclusively from the microphylls, which were apicodistally silicified into multiphytolith aggregates. Phytolith aggregates were larger and more numerous in anatomical regions engaging in greater evapotranspirational activity. The tissue distribution of L. alopecuroides phytoliths is inconsistent with the expectations of proposed adaptive hypotheses of phytolith evolutionary origin. Instead, it is hypothesized that phytoliths may have arisen incidentally in the L. alopecuroides-like ancestral plant, polymerizing from intraplant silicon accumulations arising via bulk flow and 'leaky' cellular micronutrient channels. This basal, nonadaptive phytolith formation model would provide the evolutionary 'raw material' for later modification into the useful, adaptative, phytolith deposits seen in later-diverging plant clades.


Assuntos
Lycopodiaceae , Dióxido de Silício , Plantas , Silício , Evolução Biológica
3.
Mol Phylogenet Evol ; 169: 107416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032645

RESUMO

The initial vertebrate conquest of land by stegocephalians (Sarcopterygia) allowed access to new resources and exploitation of untapped niches precipitating a major phylogenetic diversification. However, a paucity of fossils has left considerable uncertainties about phylogenetic relationships and the eco-morphological stages in this key transition in Earth history. Among extant actinopterygians, three genera of mudskippers (Gobiidae: Oxudercinae), Boleophthalmus, Periophthalmus and Periophthalmodon are the most terrestrialized, with vertebral, appendicular, locomotory, respiratory, and epithelial specializations enabling overland excursions up to 14 h. Unlike early stegocephalians, the ecologies and morphologies of the 45 species of oxudercines are well known, making them viable analogs for the initial vertebrate conquest of land. Nevertheless, they have received little phylogenetic attention. We compiled the largest molecular dataset to date, with 29 oxudercine species, and 5 nuclear and mitochondrial loci. Phylogenetic and comparative analyses revealed strong support for two independent terrestrial transitions, and a complex suit of ecomorphological forms in estuarine environments. Furthermore, neither Oxudercinae nor their presumed sister-group the eel gobies (Amblyopinae, a group of elongated gobies) were monophyletic with respect to each other, requiring a merging of these two subfamilies and revealing an expansion of phenotypic variation within the "mudskipper" clade. We did not find support for the expected linear model of ecomorphological and locomotory transition from fully aquatic, to mudswimming, to pectoral-aided mudswimming, to lobe-finned terrestrial locomotion proposed by earlier morphological studies. This high degree of convergent or parallel transitions to terrestriality, and apparent divergent directions of estuarine adaptation, promises even greater potential for this clade to illuminate the conquest of land. Future work should focus on these less-studied species with "transitional" and other mud-habitat specializations to fully resolve the dynamics of this diversification.


Assuntos
Adaptação Fisiológica , Ecossistema , Perciformes , Filogenia , Animais , Perciformes/classificação , Perciformes/genética , Perciformes/fisiologia
4.
Proc Natl Acad Sci U S A ; 114(3): 540-545, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049837

RESUMO

Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event.


Assuntos
Dinossauros/embriologia , Dente/embriologia , Animais , Evolução Biológica , Aves/embriologia , Extinção Biológica , Feminino , Fósseis/anatomia & histologia , Odontogênese , Répteis/embriologia , Especificidade da Espécie
7.
Nature ; 459(7249): 940-4, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536256

RESUMO

Theropods have traditionally been assumed to have lost manual digits from the lateral side inward, which differs from the bilateral reduction pattern seen in other tetrapod groups. This unusual reduction pattern is clearly present in basal theropods, and has also been inferred in non-avian tetanurans based on identification of their three digits as the medial ones of the hand (I-II-III). This contradicts the many developmental studies indicating II-III-IV identities for the three manual digits of the only extant tetanurans, the birds. Here we report a new basal ceratosaur from the Oxfordian stage of the Jurassic period of China (156-161 million years ago), representing the first known Asian ceratosaur and the only known beaked, herbivorous Jurassic theropod. Most significantly, this taxon possesses a strongly reduced manual digit I, documenting a complex pattern of digital reduction within the Theropoda. Comparisons among theropod hands show that the three manual digits of basal tetanurans are similar in many metacarpal features to digits II-III-IV, but in phalangeal features to digits I-II-III, of more basal theropods. Given II-III-IV identities in avians, the simplest interpretation is that these identities were shared by all tetanurans. The transition to tetanurans involved complex changes in the hand including a shift in digit identities, with ceratosaurs displaying an intermediate condition.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Extremidades/anatomia & histologia , Fósseis , Animais , China , Filogenia
8.
Nat Commun ; 15(1): 2864, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580657

RESUMO

Global climate patterns fundamentally shape the distribution of species and ecosystems. For example, Bergmann's rule predicts that homeothermic animals, including birds and mammals, inhabiting cooler climates are generally larger than close relatives from warmer climates. The modern world, however, lacks the comparative data needed to evaluate such macroecological rules rigorously. Here, we test for Bergmann's rule in Mesozoic dinosaurs and mammaliaforms that radiated within relatively temperate global climate regimes. We develop a phylogenetic model that accounts for biases in the fossil record and allows for variable evolutionary dispersal rates. Our analysis also includes new fossil data from the extreme high-latitude Late Cretaceous Arctic Prince Creek Formation. We find no evidence for Bergmann's rule in Mesozoic dinosaurs or mammaliaforms, the ancestors of extant homeothermic birds and mammals. When our model is applied to thousands of extant dinosaur (bird) and mammal species, we find that body size evolution remains independent of latitude. A modest temperature effect is found in extant, but not in Mesozoic, birds, suggesting that body size evolution in modern birds was influenced by Bergmann's rule during Cenozoic climatic change. Our study provides a general approach for studying macroecological rules, highlighting the fossil record's power to address longstanding ecological principles.


Assuntos
Dinossauros , Animais , Filogenia , Ecossistema , Modelos Biológicos , Tamanho Corporal , Mamíferos , Evolução Biológica
10.
Acta Biomater ; 158: 412-422, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603731

RESUMO

Beavers (Castor) stand out among mammals for their unique capacity to fell trees using their large, ever-growing incisors. This routine consumption of resistant fodder induces prodigious wear in the lower incisors, despite this blunting effect the incisors maintain a remarkably sharp cutting edge. Notably, the enamel edges of their incisors show a highly complex two-part microstructure of which the biomechanical import is unknown. Here, using fracture analysis, nanoindentation, and wear testing on North American beaver (C. canadensis) incisors we test the microstructure's possible contribution to maintaining incisal sharpness. Although comparable in hardness, the inner enamel preferentially fails and readily wears at 2.5 times the rate of the outer enamel. The outer microstructure redirects all fractures in parallel, decreasing fracture coalescence. Conversely, the inner microstructure facilitates crack coalescence increasing the wear rate by isolating layers of enamel prisms that readily fragment. Together these two architectures form a microstructurally driven self-sharpening mechanism contained entirely within the thin enamel shell. Our results demonstrate that enamel microstructures exposed at the occlusal surface can markedly influence both enamel crest shape and surface texture in wearing dentitions. The methods introduced here open the door to exploring the biomechanical functionality and evolution of enamel microstructures throughout Mammalia. STATEMENT OF SIGNIFICANCE: Enamel microstructure varies significantly with the diversity of diets, bite forces, and tooth shapes exhibited by mammals. However, minimal micromechanical exploration of microstructures outside of humans, leaves our understanding of biomechanical functions in a nascent stage. Using biologically informed mechanical testing, we demonstrate that the complex two-part microstructure that comprises the cutting edge of beaver incisors facilitates self-sharpening of the enamel edge. This previously unrecognized mechanism provides critical maintenance to the shape of the incisal edge ensuring continued functionality despite extreme wear incurred during feeding. More broadly, we show how the architecture of prisms and the surrounding interprismatic matrix dictate the propagation of fractures through enamel fabrics and how the pairing of enamel fabrics can result in biologically advantageous functions.


Assuntos
Fraturas Ósseas , Incisivo , Animais , Humanos , Árvores , Roedores , Dureza , Esmalte Dentário
11.
Sci Adv ; 9(49): eadi0505, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064561

RESUMO

Tyrannosaurids were large carnivorous dinosaurs that underwent major changes in skull robusticity and body proportions as they grew, suggesting that they occupied different ecological niches during their life span. Although adults commonly fed on dinosaurian megaherbivores, the diet of juvenile tyrannosaurids is largely unknown. Here, we describe a remarkable specimen of a juvenile Gorgosaurus libratus that preserves the articulated hindlimbs of two yearling caenagnathid dinosaurs inside its abdominal cavity. The prey were selectively dismembered and consumed in two separate feeding events. This predator-prey association provides direct evidence of an ontogenetic dietary shift in tyrannosaurids. Juvenile individuals may have hunted small and young dinosaurs until they reached a size when, to satisfy energy requirements, they transitioned to feeding on dinosaurian megaherbivores. Tyrannosaurids occupied both mesopredator and apex predator roles during their life span, a factor that may have been key to their evolutionary success.


Assuntos
Dinossauros , Fósseis , Humanos , Animais , Conteúdo Gastrointestinal , Evolução Biológica , Crânio/anatomia & histologia , Dieta , Dinossauros/anatomia & histologia
12.
Nature ; 439(7077): 715-8, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467836

RESUMO

The tyrannosauroid fossil record is mainly restricted to Cretaceous sediments of Laurasia, although some very fragmentary Jurassic specimens have been referred to this group. Here we report a new basal tyrannosauroid, Guanlong wucaii gen. et sp. nov., from the lower Upper Jurassic of the Junggar Basin, northwestern China. G. wucaii is the oldest known tyrannosauroid and shows several unexpectedly primitive pelvic features. Nevertheless, the limbs of G. wucaii share several features with derived coelurosaurs, and it possesses features shared by other coelurosaurian clades. This unusual combination of character states provides an insight into the poorly known early radiation of the Coelurosauria. Notably, the presumed predatory Guanlong has a large, fragile and highly pneumatic cranial crest that is among the most elaborate known in any non-avian dinosaur and could be comparable to some classical exaggerated ornamental traits among vertebrates.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Animais , China , Dinossauros/classificação , História Antiga , Filogenia , Esqueleto , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 106(41): 17261-6, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805035

RESUMO

Tyrannosaurid theropods are characterized by a generalized body plan, and all well-known taxa possess deep and robust skulls that are optimized for exerting powerful bite forces. The fragmentary Late Cretaceous Alioramus appears to deviate from this trend, but its holotype and only known specimen is incomplete and poorly described. A remarkable new tyrannosaurid specimen from the Maastrichtian (Late Cretaceous) of Mongolia, including a nearly complete and well-preserved skull and an extensive postcranium, represents a new species of Alioramus, Alioramus altai. This specimen conclusively demonstrates that Alioramus is a small, gracile, long-snouted carnivore that deviates from other tyrannosaurids in its body plan and presumably its ecological habits. As such, it increases the range of morphological diversity in one of the most familiar extinct clades. Phylogenetic analysis places Alioramus deep within the megapredatory Tyrannosauridae, and within the tyrannosaurine subclade that also includes Tarbosaurus and Tyrannosaurus. Both pneumatization and ornamentation are extreme compared with other tyrannosaurids, and the skull contains eight discrete horns. The new specimen is histologically aged at nine years old but is smaller than other tyrannosaurids of similar age. Despite its divergent cranial form, Alioramus is characterized by a similar sequence of ontogenetic changes as the megapredatory Tyrannosaurus and Albertosaurus, indicating that ontogenetic change is conservative in tyrannosaurids.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Mamíferos/anatomia & histologia , Altitude , Animais , Osso e Ossos/anatomia & histologia , Processamento de Imagem Assistida por Computador , Maxila/anatomia & histologia , Mongólia , Comportamento Predatório , Crânio/anatomia & histologia
14.
J Exp Biol ; 214(Pt 10): 1655-67, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525311

RESUMO

Differential scaling of musculoskeletal traits leads to differences in performance across ontogeny and ultimately determines patterns of resource use during development. Because musculoskeletal growth of the feeding system facilitates high bite-force generation necessary to overcome the physical constraints of consuming more durable prey, durophagous taxa are well suited for investigations of the scaling relationships between musculoskeletal growth, bite-force generation and dietary ontogeny. To elucidate which biomechanical factors are responsible for allometric changes in bite force and durophagy, we developed and experimentally tested a static model of bite-force generation throughout development in the durophagous turtle Sternotherus minor. Moreover, we quantified the fracture properties of snails found in the diet to evaluate the relationship between bite force and the forces required to process durable prey. We found that (1) the static bite-force model accurately predicts the ontogenetic scaling of bite forces, (2) bite-force positive allometry is accomplished by augmenting muscle size and muscle pennation, and (3) the rupture forces of snails found in the diet show a similar scaling pattern to bite force across ontogeny. These results indicate the importance of muscle pennation for generating high bite forces while maintaining muscle size and provide empirical evidence that the allometric patterns of musculoskeletal growth in S. minor are strongly linked to the structural properties of their primary prey.


Assuntos
Força de Mordida , Comportamento Alimentar/fisiologia , Arcada Osseodentária/anatomia & histologia , Mastigação/fisiologia , Modelos Biológicos , Músculo Esquelético/crescimento & desenvolvimento , Tartarugas/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Músculo Esquelético/anatomia & histologia , Tartarugas/anatomia & histologia
15.
Nature ; 433(7023): 305-8, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15662422

RESUMO

Long-standing controversy surrounds the question of whether living bird lineages emerged after non-avian dinosaur extinction at the Cretaceous/Tertiary (K/T) boundary or whether these lineages coexisted with other dinosaurs and passed through this mass extinction event. Inferences from biogeography and molecular sequence data (but see ref. 10) project major avian lineages deep into the Cretaceous period, implying their 'mass survival' at the K/T boundary. By contrast, it has been argued that the fossil record refutes this hypothesis, placing a 'big bang' of avian radiation only after the end of the Cretaceous. However, other fossil data--fragmentary bones referred to extant bird lineages--have been considered inconclusive. These data have never been subjected to phylogenetic analysis. Here we identify a rare, partial skeleton from the Maastrichtian of Antarctica as the first Cretaceous fossil definitively placed within the extant bird radiation. Several phylogenetic analyses supported by independent histological data indicate that a new species, Vegavis iaai, is a part of Anseriformes (waterfowl) and is most closely related to Anatidae, which includes true ducks. A minimum of five divergences within Aves before the K/T boundary are inferred from the placement of Vegavis; at least duck, chicken and ratite bird relatives were coextant with non-avian dinosaurs.


Assuntos
Aves/anatomia & histologia , Aves/classificação , Fósseis , Filogenia , Animais , Galinhas/anatomia & histologia , Galinhas/classificação , Dinossauros/classificação , Patos/anatomia & histologia , Patos/classificação , História Antiga , Paleógnatas/anatomia & histologia , Paleógnatas/classificação , Esqueleto , Fatores de Tempo
16.
Curr Biol ; 31(16): 3469-3478.e5, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34171301

RESUMO

The unexpected discovery of non-avian dinosaurs from Arctic and Antarctic settings has generated considerable debate about whether they had the capacity to reproduce at high latitudes-especially the larger-bodied, hypothetically migratory taxa. Evidence for dinosaurian polar reproduction remains very rare, particularly for species that lived at the highest paleolatitudes (>75°). Here we report the discovery of perinatal and very young dinosaurs from the highest known paleolatitude for the clade-the Cretaceous Prince Creek Formation (PCF) of northern Alaska. These data demonstrate Arctic reproduction in a diverse assemblage of large- and small-bodied ornithischian and theropod species. In terms of overall diversity, 70% of the known dinosaurian families, as well as avialans (birds), in the PCF are represented by perinatal individuals, the highest percentage for any North American Cretaceous formation. These findings, coupled with prolonged incubation periods, small neonate sizes, and short reproductive windows suggest most, if not all, PCF dinosaurs were nonmigratory year-round Arctic residents. Notably, we reconstruct an annual chronology of reproductive events for the ornithischian dinosaurs using refined paleoenvironmental/plant phenology data and new insights into dinosaur incubation periods. Seasonal resource limitations due to extended periods of winter darkness and freezing temperatures placed severe constraints on dinosaurian reproduction, development, and maintenance, suggesting these taxa showed polar-specific life history strategies, including endothermy.


Assuntos
Dinossauros , Fósseis , Comportamento de Nidação , Animais , Regiões Árticas , Dinossauros/anatomia & histologia , Filogenia , Reprodução
17.
Science ; 373(6556): 806-808, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385399

RESUMO

Little is known about woolly mammoth (Mammuthus primigenius) mobility and range. Here we use high temporal resolution sequential analyses of strontium isotope ratios along an entire 1.7-meter-long tusk to reconstruct the movements of an Arctic woolly mammoth that lived 17,100 years ago, during the last ice age. We use an isotope-guided random walk approach to compare the tusk's strontium and oxygen isotope profiles to isotopic maps. Our modeling reveals patterns of movement across a geographically extensive range during the animal's ~28-year life span that varied with life stages. Maintenance of this level of mobility by megafaunal species such as mammoth would have been increasingly difficult as the ice age ended and the environment changed at high latitudes.

18.
Proc Biol Sci ; 277(1680): 375-81, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-19846460

RESUMO

The extremes of dinosaur body size have long fascinated scientists. The smallest (<1 m length) known dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65-75 cm in total body length and 0.5-0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade.


Assuntos
Tamanho Corporal , Dinossauros , Fósseis , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/classificação , História Antiga , América do Norte , Paleontologia/métodos
19.
Proc Biol Sci ; 277(1679): 191-8, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19386658

RESUMO

Ornithomimosaurs (ostrich-mimic dinosaurs) are a common element of some Cretaceous dinosaur assemblages of Asia and North America. Here, we describe a new species of ornithomimosaur, Beishanlong grandis, from an associated, partial postcranial skeleton from the Aptian-Albian Xinminpu Group of northern Gansu, China. Beishanlong is similar to another Aptian-Albian ornithomimosaur, Harpymimus, with which it shares a phylogenetic position as more derived than the Barremian Shenzhousaurus and as sister to a Late Cretaceous clade composed of Garudimimus and the Ornithomimidae. Beishanlong is one of the largest definitive ornithomimosaurs yet described, though histological analysis shows that the holotype individual was still growing at its death. Together with the co-eval and sympatric therizinosaur Suzhousaurus and the oviraptorosaur Gigantraptor, Beishanlong provides evidence for the parallel evolution of gigantism in separate lineages of beaked and possibly herbivorous coelurosaurs within a short time span in Central Asia.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Animais , Tamanho Corporal , Osso e Ossos/anatomia & histologia , China , Dinossauros/classificação , Filogenia
20.
Nature ; 430(7001): 772-5, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15306807

RESUMO

How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d(-1), reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.


Assuntos
Evolução Biológica , Constituição Corporal , Dinossauros/anatomia & histologia , Dinossauros/crescimento & desenvolvimento , Fósseis , Gigantismo/fisiopatologia , Longevidade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA