Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008734

RESUMO

Targeted disruption of E2f2 in mice causes T-cell hyperactivation and a disproportionate cell cycle entry upon stimulation. However, E2f2-/- mice do not develop a lymphoproliferative condition. We report that E2f2 plays a Fas-dependent anti-apoptotic function in vitro and in vivo. TCR-stimulated murine E2f2-/- T cells overexpress the proapoptotic genes Fas and FasL and exhibit enhanced apoptosis, which is prevented by treatment with neutralizing anti-FasL antibodies. p53 pathway is activated in TCR-stimulated E2f2-/- lymphocytes, but targeted disruption of p53 in E2f2-/- mice does not abrogate Fas/FasL expression or apoptosis, implying a p53-independent apoptotic mechanism. We show that E2f2 is recruited to Fas and FasL gene promoters to repress their expression. in vivo, E2f2-/- mice are prone to develop immune-mediated liver injury owing to an aberrant lymphoid Fas/FasL activation. Taken together, our results suggest that E2f2-dependent inhibition of Fas/FasL pathway may play a direct role in limiting the development of immune-mediated pathologies.


Assuntos
Apoptose , Fator de Transcrição E2F2/metabolismo , Proteína Ligante Fas/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Ferimentos e Lesões/imunologia , Receptor fas/metabolismo , Animais , Concanavalina A , Proteína Ligante Fas/genética , Células HCT116 , Humanos , Camundongos , Modelos Biológicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Ferimentos e Lesões/patologia , Receptor fas/genética
2.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230876

RESUMO

E2F1/E2F2 expression correlates with malignancy in prostate cancer (PCa), but its functional significance remains unresolved. To define the mechanisms governed by E2F in PCa, we analyzed the contribution of E2F target genes to the control of genome integrity, and the impact of modulating E2F activity on PCa progression. We show that silencing or inhibiting E2F1/E2F2 induces DNA damage during S phase and potentiates 5-FU-induced replication stress and cellular toxicity. Inhibition of E2F downregulates the expression of E2F targets involved in nucleotide biosynthesis (TK1, DCK, TYMS), whose expression is upregulated by 5-FU. However, their enzymatic products failed to rescue DNA damage of E2F1/E2F2 knockdown cells, suggesting additional mechanisms for E2F function. Interestingly, targeting E2F1/E2F2 in PCa cells reduced WEE1 expression and resulted in premature CDK1 activation during S phase. Inhibition of CDK1/CDK2 prevented DNA damage induced by E2F loss, suggesting that E2F1/E2F2 safeguard genome integrity by restraining CDK1/CDK2 activity. Importantly, combined inhibition of E2F and ATR boosted replication stress and dramatically reduced tumorigenic capacity of PCa cells in xenografts. Collectively, inhibition of E2F in combination with drugs targeting nucleotide biosynthesis or DNA repair is a promising strategy to provoke catastrophic levels of replication stress that could be applied to PCa treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA