Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Arch Virol ; 166(11): 2999-3012, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34389893

RESUMO

The orthohantavirus Puumala virus (PUUV), which is transmitted by bank voles (Clethrionomys glareolus), and other vole-borne hantaviruses contain in their small (S) genome segment two overlapping open reading frames, coding for the nucleocapsid protein and the non-structural protein NSs, a putative type I interferon (IFN-I) antagonist. To investigate the role of NSs of PUUV and other orthohantaviruses, the expression pattern of recombinant NSs constructs and their ability to inhibit human IFN-I promoter activity were investigated. The NSs proteins of PUUV and related cricetid-borne orthohantaviruses showed strong inhibition of IFN-I promoter induction. We identified protein products originating from three and two methionine initiation codons in the NSs ORF of PUUV during transfection and infection, respectively. The three putative start codons are conserved in all PUUV strains analysed. Translation initiation at these start codons influenced the inhibitory activity of the NSs products, with the wild-type (wt) construct expressing two proteins starting at the first and second methionine and showing strong inhibition activity. Analysis of in vitro-generated variants and naturally occurring PUUV NSs proteins indicated that amino acid variation in the NSs protein is well tolerated, suggesting its phenotypic plasticity. The N-terminal 20-amino-acid region of the NSs protein was found to be associated with strong inhibition and to be highly vulnerable to amino acid exchanges and tag fusions. Infection studies using human, bank vole, and Vero E6 cells did not show obvious differences in the replication capacity of PUUV Sotkamo wt and a strain with a truncated NSs protein (NSs21Stop), showing that the lack of a full-length NSs might be compensated by its N-terminal peptide, as seen in transfection experiments. These results contribute to our understanding of virus-host interactions and highlight the importance of future innate immunity studies in reservoir hosts.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Interferon Tipo I/metabolismo , Virus Puumala/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Células A549 , Adaptação Fisiológica , Animais , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Alemanha , Células HEK293 , Febre Hemorrágica com Síndrome Renal , Humanos , Interferon Tipo I/genética , Interferon beta/genética , Interferon beta/metabolismo , Mutação , Regiões Promotoras Genéticas , Virus Puumala/isolamento & purificação , Virus Puumala/fisiologia , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188137

RESUMO

UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.


Assuntos
Galactose/biossíntese , Glicoconjugados/biossíntese , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Encefalopatias/metabolismo , Linhagem Celular , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Cricetinae , Meios de Cultura/química , Glicoesfingolipídeos , Glicosilação , Humanos , Cinética , Pulmão , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Uridina Difosfato Glucose/biossíntese
3.
J Gen Virol ; 97(5): 1060-1065, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26932442

RESUMO

Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases.


Assuntos
Infecções por Hantavirus/veterinária , Orthohantavírus/isolamento & purificação , Ratos , Doenças dos Roedores/virologia , Animais , Comores/epidemiologia , Feminino , Variação Genética , Orthohantavírus/classificação , Orthohantavírus/genética , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Masculino , Filogenia , Doenças dos Roedores/epidemiologia
4.
Subcell Biochem ; 76: 167-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219712

RESUMO

The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system.


Assuntos
Fosfatase Alcalina/fisiologia , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/metabolismo , Animais , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Humanos , Neurônios/ultraestrutura , Mapas de Interação de Proteínas/fisiologia
5.
Blood ; 122(17): 2935-42, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23958951

RESUMO

With an array of activating and inhibitory receptors, natural killer (NK) cells are involved in the eradication of infected, transformed, and tumor cells. NKp44 is a member of the natural cytotoxicity receptor family, which is exclusively expressed on activated NK cells. Here, we identify natural cytotoxicity receptor NKp44 (NKp44L), a novel isoform of the mixed-lineage leukemia-5 protein, as a cellular ligand for NKp44. Unlike the other MLL family members, NKp44L is excluded from the nucleus, but expressed at the cell-surface level; its subcellular localization is being associated with the presence of a specific C-terminal motif. Strikingly, NKp44L has not been detected on circulating cells isolated from healthy individuals, but it is expressed on a large panel of the tumor and transformed cells. The sharply decreased NK lysis activity induced by anti-NKp44L antibodies directly demonstrates the role of NKp44L in cytotoxicity. Taken together, these results show that NKp44L could be critical for NK cell-mediated innate immunity. The identification and cellular distribution of NKp44L highlight the role of this self-molecule as a danger signal to alert the NK cell network.


Assuntos
Citotoxicidade Imunológica/genética , Proteínas de Ligação a DNA/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Motivos de Aminoácidos , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Biblioteca Gênica , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Ligantes , Ativação Linfocitária , Receptor 2 Desencadeador da Citotoxicidade Natural/genética , Especificidade de Órgãos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
6.
Proc Natl Acad Sci U S A ; 108(19): 8003-8, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518917

RESUMO

Dengue virus (DENV) causes the major arboviral disease of the tropics, characterized in its severe forms by signs of hemorrhage and plasma leakage. DENV encodes a nonstructural glycoprotein, NS1, that associates with intracellular membranes and the cell surface. NS1 is eventually secreted as a soluble hexamer from DENV-infected cells and circulates in the bloodstream of infected patients. Extracellular NS1 has been shown to modulate the complement system and to enhance DENV infection, yet its structure and function remain essentially unknown. By combining cryoelectron microscopy analysis with a characterization of NS1 amphipathic properties, we show that the secreted NS1 hexamer forms a lipoprotein particle with an open-barrel protein shell and a prominent central channel rich in lipids. Biochemical and NMR analyses of the NS1 lipid cargo reveal the presence of triglycerides, bound at an equimolar ratio to the NS1 protomer, as well as cholesteryl esters and phospholipids, a composition evocative of the plasma lipoproteins involved in vascular homeostasis. This study suggests that DENV NS1, by mimicking or hijacking lipid metabolic pathways, contributes to endothelium dysfunction, a key feature of severe dengue disease.


Assuntos
Vírus da Dengue/química , Proteínas não Estruturais Virais/química , Animais , Linhagem Celular , Chlorocebus aethiops , Simulação por Computador , Microscopia Crioeletrônica , Vírus da Dengue/ultraestrutura , Drosophila , Células HEK293 , Humanos , Imageamento Tridimensional , Lipoproteínas HDL/química , Lipoproteínas HDL/ultraestrutura , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Células Vero , Proteínas não Estruturais Virais/ultraestrutura
7.
Viruses ; 16(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275944

RESUMO

The beginning of the 21st century was marked by an increase in the number of emerging/reemerging infectious diseases detected worldwide and by the challenging COVID-19 pandemic [...].


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Animais , Humanos , Zoonoses , Zoonoses Virais , Pandemias , Doenças Transmissíveis Emergentes/epidemiologia
8.
PLoS Negl Trop Dis ; 16(10): e0010844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223391

RESUMO

Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.


Assuntos
Orthohantavírus , Virus Puumala , Vírus de RNA , Vírus , Humanos , Animais , Roedores , Orthohantavírus/genética , Virus Puumala/genética , Arvicolinae , Proteínas do Nucleocapsídeo/genética , Interferons
9.
Cell Tissue Res ; 343(3): 521-36, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191615

RESUMO

The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.


Assuntos
Fosfatase Alcalina/metabolismo , Osso e Ossos/enzimologia , Encéfalo/enzimologia , Isoenzimas/metabolismo , Fígado/enzimologia , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Vasos Sanguíneos/enzimologia , Linhagem Celular , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/enzimologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Primatas , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Distribuição Tecidual
10.
Viruses ; 13(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478127

RESUMO

Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNß promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNß response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions.


Assuntos
Infecções por Hantavirus/metabolismo , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Orthohantavírus/fisiologia , Transdução de Sinais , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Orthohantavírus/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon Tipo I/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Proteômica/métodos , Receptores Imunológicos/metabolismo , Ativação Transcricional , Células Vero , Proteínas Virais/química , Proteínas Virais/genética , Virulência
11.
Glycoconj J ; 26(4): 477-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18937066

RESUMO

A striking feature of the cellular prion protein (PrP(C)) is the heterogeneity of its glycoforms, whose contribution to PrP(C) function has yet to be defined. Using the 1C11 neuronal bioaminergic differentiation model and a glycomics approach, we show here a correlation between differential PrP(C) N-glycosylations in 1C11(5-HT) serotonergic and 1C11(NE) noradrenergic cells compared to their 1C11 precursor cells and a variation of the glycogenome expression status in these cells. In particular, expression of genes involved in N-glycan synthesis or in the modeling of chondroitin and heparan sulfate proteoglycans appeared to be modulated. Our results highlight that, the expression of glycosylation-related genes is regulated during bioaminergic neuronal differentiation, consistent with a participation of glycoconjugates in neuronal development and plasticity. A neuronal regulation of glycosylation processes may have direct implications on some neurospecific functions of PrP(C) and may participate in specific brain targeting of prion strains.


Assuntos
Aminas Biogênicas/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Neurônios/citologia , Neurônios/metabolismo , Príons/metabolismo , Linhagem Celular , Eletroforese , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Glicômica , Glicosaminoglicanos/biossíntese , Glicosilação , Filogenia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
12.
Sci Rep ; 9(1): 12404, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455867

RESUMO

Hantaviruses are zoonotic agents transmitted from small mammals, mainly rodents, to humans, where they provoke diseases such as Hemorrhagic fever with Renal Syndrome (HFRS) and its mild form, Nephropathia Epidemica (NE), or Hantavirus Cardio-Pulmonary Syndrome (HCPS). Hantaviruses are spread worldwide and monitoring animal reservoirs is of primary importance to control the zoonotic risk. Here, we describe the development of a pan-viral resequencing microarray (PathogenID v3.0) able to explore the genetic diversity of rodent-borne hantaviruses endemic in Europe. Among about 800 sequences tiled on the microarray, 52 correspond to a tight molecular sieve of hantavirus probes covering a large genetic landscape. RNAs from infected animal tissues or from laboratory strains have been reverse transcribed, amplified, then hybridized to the microarray. A classical BLASTN analysis applied to the sequence delivered through the microarray allows to identify the hantavirus species up to the exact geographical variant present in the tested samples. Geographical variants of the most common European hantaviruses from France, Germany, Slovenia and Finland, such as Puumala virus, Dobrava virus and Tula virus, were genetically discriminated. Furthermore, we precisely characterized geographical variants still unknown when the chip was conceived, such as Seoul virus isolates, recently emerged in France and the United Kingdom.


Assuntos
Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Orthohantavírus/genética , Europa (Continente) , Orthohantavírus/classificação , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/patologia , Humanos , Filogenia , Filogeografia , Virus Puumala/classificação , Virus Puumala/genética , RNA Viral/genética , RNA Viral/metabolismo
13.
Biotechnol Bioeng ; 100(6): 1178-92, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553404

RESUMO

The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.


Assuntos
Fosfatase Alcalina/ultraestrutura , Técnicas de Cultura de Células/métodos , Polissacarídeos/biossíntese , Polissacarídeos/ultraestrutura , Fosfatase Alcalina/análise , Fosfatase Alcalina/biossíntese , Animais , Reatores Biológicos , Células CHO , Configuração de Carboidratos , Sequência de Carboidratos , Contagem de Células , Linhagem Celular Transformada , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Feminino , Glicosilação , Humanos , Manose/análise , Manose/metabolismo , Espectrometria de Massas , Microesferas , Polissacarídeos/análise , Proteínas da Gravidez/análise , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/ultraestrutura , Suspensões , Temperatura
14.
Cell Signal ; 19(10): 2080-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17604604

RESUMO

Interferons (IFNs) are pleiotropic cytokines involved in the regulation of physiological and pathological processes. Upon interaction with their specific receptors, IFNs activate the Jak/STAT signalling pathway. Numerous studies suggest, however, that the classical Jak/STAT pathway cannot alone account for the wide range of IFN's biological effects. To better understand the role of alternative signalling pathways in the type I IFNs response, we analyzed novel tyrosine-phosphorylated proteins following IFN-alpha2 stimulation. We showed for the first time that the Grb2-associated binder 2 (Gab2) protein is differentially phosphorylated upon the IFN subtype employed and the cells stimulated. We demonstrated that IFNAR1 physically interacts with Gab2. Moreover, the cellular content of Gab2 varies as a function of IFN receptor chain expression levels, and in particular of the ratio of IFNAR1 to IFNAR2, suggesting that Gab2 and IFNAR2 compete for interaction with IFNAR1. Analysis of Gab2 deletion mutants indicates that IFNAR1 might interact with a Gab2 region containing p85-PI3'kinase binding sites. Our results shed new light on recent data involving both Gab2 and type I IFNs in osteoclastogenesis and oncogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interferon Tipo I/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais
15.
Ann N Y Acad Sci ; 1096: 106-19, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17405922

RESUMO

The cellular prion protein PrP(C) is the normal counterpart of the scrapie prion protein PrP(Sc), the main component of the infectious agent of transmissible spongiform encephalopathies (TSEs). It is a ubiquitous cell-surface glycoprotein, abundantly expressed in neurons, which constitute the targets of TSE pathogenesis. Taking advantage of the 1C11 neuroectodermal cell line, endowed with the capacity to convert into 1C11(5-HT) serotonergic or 1C11(NE) noradrenergic neuronal cells, allowed us to ascribe a signaling function to PrP(C). Antibody-mediated ligation of PrP(C) recruits transduction pathways, which involve nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species production and target the extracellular-regulated kinases ERK1/2. In fully differentiated cells only, these effectors are under the control of a PrP(C)-caveolin-Fyn platform, located on neuritic extensions. In addition to its proper signaling activity, PrP(C) modulates the agonist-induced response of the three serotonergic G protein-coupled receptors present on the 1C11(5-HT) differentiated cells. The impact of PrP(C) ligation on the receptor couplings depends on the receptor subtype and the pathway considered. The implementation of the PrP(C)-caveolin complex again is mandatory for PrP(C) to exert its action on 5-HT receptor signaling. Our current data argue that PrP(C) interferes with the intensities and/or dynamics of G protein activation by agonist-bound 5-HT receptors. By mobilizing transduction cascades controlling the cellular redox state and the ERK1/2 kinases and by altering 5-HT receptor-mediated intracellular response, PrP(C) takes part in the homeostasis of serotonergic neuronal cells. These findings may have implications for future research aiming at understanding the fate of serotonergic neurons in prion diseases.


Assuntos
Neurônios/metabolismo , Proteínas PrPC/metabolismo , Transdução de Sinais , Animais , Caveolinas/metabolismo , Diferenciação Celular , Linhagem Celular , Ectoderma/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos
16.
Biotechnol Prog ; 23(3): 652-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17500530

RESUMO

It is not well understood how changes from suspension to microcarrier cultures affect cell growth, metabolism, and yield of recombinant proteins. To investigate the effects of culture conditions on cell characteristics, fed-batch bioreactor cultures were performed under different culture conditions (suspension cultures, cultures attached to Cytodex 3 and Cytopore 1 microcarriers) using two different Chinese hamster ovary cell lines producing either secreted human placental alkaline phosphatase (TR2-255) or tissue plasminogen activator (CHO 1-15-500). In controlled, agitated bioreactors, suspension cultures reached cell densities and product titers higher than those in microcarrier cultures, in contrast to the results in static flask cultures. Growth and metabolic activities showed similar trends in suspension and microcarrier culture regardless of cell line. However, the responses of the specific productivities to the different culture conditions differed significantly between the cell lines.


Assuntos
Biomassa , Reatores Biológicos , Proliferação de Células , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Contagem de Células , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Humanos , Microscopia de Contraste de Fase , Proteínas Recombinantes/biossíntese , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
17.
FASEB J ; 19(9): 1078-87, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15985531

RESUMO

A major determinant of neuronal homeostasis is the proper integration of cell signaling pathways recruited by a variety of neuronal and non-neuronal factors. By taking advantage of a neuroectodermal cell line (1C11) endowed with the capacity to differentiate into serotonergic (1C115-HT) or noradrenergic (1C11NE) neurons, we identified serotonin (5-hydroxytryptamine, 5-HT)- and norepinephrine (NE)-dependent signaling cascades possibly involved in neuronal functions. First, we establish that 5-HT2B receptors and 1D adrenoceptors are functionally coupled to reactive oxygen species (ROS) synthesis through NADPH oxidase activation in 1C115-HT and 1C11NE cells. This observation constitutes the prime evidence that bioaminergic autoreceptors take part in the control of the cellular redox equilibrium in a neuronal context. Second, our data identify TACE (TNF- Converting Enzyme), a member of a disintegrin and metalloproteinase (ADAM) family, as a downstream target of the 5-HT2B and 1D receptor-NADPH oxidase signaling pathways. Upon 5-HT2B or 1D receptor stimulation, ROS fully govern TNF- shedding in the surrounding milieu of 1C115-HT or 1C11NE cells. Third, 5-HT2B and 1Dreceptor couplings to the NADPH oxidase-TACE cascade are strictly restricted to 1C11-derived progenies that have implemented a complete serotonergic or noradrenergic phenotype. Overall, these observations suggest that 5-HT2B and 1D autoreceptors may play a role in the maintenance of neuron- and neurotransmitter-associated functions. Eventually, our study may have implications regarding the origin of oxidative stress as well as up-regulated expression of proinflammatory cytokines in neurodegenerative disorders, which may relate to the deviation of normal signaling pathways.


Assuntos
Proteínas ADAM/metabolismo , Autorreceptores/fisiologia , Neurônios/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 5-HT1D de Serotonina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Proteína ADAM17 , Animais , Diferenciação Celular , Linhagem Celular , Ativação Enzimática , Homeostase , Camundongos , NADPH Oxidases/fisiologia , Doenças Neurodegenerativas/etiologia , Transdução de Sinais
18.
Ann N Y Acad Sci ; 1091: 123-41, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17341609

RESUMO

Homeostasis of the central nervous system relies on the proper integration of cell-signaling pathways recruited by a variety of neuronal and non-neuronal factors, with the aim of tightly controlling neurotransmitter metabolism, storage, and transport. We took advantage of the 1C11 neuroectodermal cell line, endowed with the capacity to selectively differentiate into serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) neurons, to identify functional targets of serotonin (5-hydroxytryptamine [5-HT]) and norepinephrine (NE) autoreceptors possibly involved in the control of neuronal functions. We demonstrate that 5-HT(2B) and adreno alpha(1D) receptors are coupled to reactive oxygen species (ROS) production through NADPH oxidase activation in 1C11(5-HT) and 1C11(NE) neuronal cells, respectively. In the signaling cascade linking 5-HT(2B) receptors to NADPH oxidase, phospholipase A2-mediated arachidonic acid production is required for ROS synthesis. ROS, in turn, act as second message signals and control the activation of TACE (TNF-alpha converting enzyme), a member of a disintegrin and metalloproteinase family. 5-HT(2B) and alpha(1D) receptor stimulation triggers TACE-dependent TNF-alpha shedding in the surrounding milieu of 1C11(5-HT) and 1C11(NE) cells. In these cells, shed TNF-alpha triggers degradation of 5-HT and NE into 5-HIAA and MHPG, respectively. Finally, we observe that 5-HT(2B) and alpha(1D) receptor couplings to the NADPH oxidase-TACE cascade are strictly restricted to 1C11-derived progenies that have implemented a complete neuronal phenotype. Altogether, our data indicate that couplings of 5-HT(2B) and alpha(1D) autoreceptors to ROS and TNF-alpha signaling control neurotransmitter metabolism in 1C11-derived neuronal cells. Eventually, we might explain the origin of oxidative stress and high level of TNF-alpha in neurodegenerative diseases as a consequence of deviation of normal signaling pathways coupled to neurotransmitters.


Assuntos
Aminas Biogênicas/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 5-HT2B de Serotonina/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linhagem Celular , Metoxi-Hidroxifenilglicol/metabolismo , Camundongos
19.
Viruses ; 8(8)2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27529272

RESUMO

Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.


Assuntos
Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Orthohantavírus/patogenicidade , Animais , Orthohantavírus/imunologia , Orthohantavírus/fisiologia , Humanos
20.
Biochem J ; 376(Pt 3): 687-96, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12952521

RESUMO

Recently, the role of N-linked glycans in the process of ERAD (endoplasmic reticulum-associated degradation) of proteins has been widely recognized. In the present study, we attempted to delineate further the sequence of events leading from a fully glycosylated soluble protein to its deglycosylated form. Degradation intermediates of a truncated form of ribophorin I, namely RI(332), which contains a single N-linked oligosaccharide and is a substrate for the ERAD/ubiquitin-proteasome pathway, were characterized in HeLa cells under conditions blocking proteasomal degradation. The action of a deoxymannojirimycin- and kifunensine-sensitive alpha1,2-mannosidase was shown here to be required for both further glycan processing and progression of RI(332) in the ERAD pathway. In a first step, the Man(8) isomer B, generated by ER mannosidase I, appears to be the major oligomannoside structure associated with RI(332) intermediates. Some other trimmed N-glycan species, in particular Glc(1)Man(7)GlcNAc(2), were also found on the protein, indicating that several mannosidases might be implicated in the initial trimming of the oligomannoside. Secondly, another intermediate of degradation of RI(332) accumulated after proteasome inhibition. We demonstrated that this completely deglycosylated form arose from the action of an N-glycanase closely linked to the ER membrane. Indeed, the deglycosylated form of the protein remained membrane-associated, while being accessible from the cytoplasm to ubiquitinating enzymes and to added protease. Our results indicate that deglycosylation of a soluble ERAD substrate glycoprotein occurs in at least two distinct steps and is coupled with the retro-translocation of the protein preceding its proteasomal degradation.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Cisteína Endopeptidases/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Células HeLa , Humanos , Cinética , Manose/análise , Manosidases/metabolismo , Proteínas de Membrana/química , Complexos Multienzimáticos/metabolismo , Polissacarídeos/análise , Complexo de Endopeptidases do Proteassoma , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA