Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phys Rev Lett ; 130(11): 117401, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001085

RESUMO

Reconstructing network dynamics from data is crucial for predicting the changes in the dynamics of complex systems such as neuron networks; however, previous research has shown that the reconstruction is possible under strong constraints such as the need for lengthy data or small system size. Here, we present a recovery scheme blending theoretical model reduction and sparse recovery to identify the governing equations and the interactions of weakly coupled chaotic maps on complex networks, easing unrealistic constraints for real-world applications. Learning dynamics and connectivity lead to detecting critical transitions for parameter changes. We apply our technique to realistic neuronal systems with and without noise on a real mouse neocortex and artificial networks.

2.
Chaos ; 28(1): 011101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390614

RESUMO

Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis. Here, we propose to describe a time-continuous time series using a local cross section and the times when the orbit crosses the local cross section. We show that if such a series of crossing times and some past observations are given, we can predict the system's dynamics with fine accuracy. This reconstructability neither depends strongly on the size nor the placement of the local cross section if we have a sufficiently long database. We demonstrate the proposed method using the Lorenz model as well as the actual measurement of wind speed.

3.
Phys Rev Lett ; 110(23): 234103, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167497

RESUMO

We study the emergence of coherence in complex networks of mutually coupled nonidentical elements. We uncover the precise dependence of the dynamical coherence on the network connectivity, the isolated dynamics of the elements, and the coupling function. These findings predict that in random graphs the enhancement of coherence is proportional to the mean degree. In locally connected networks, coherence is no longer controlled by the mean degree but rather by how the mean degree scales with the network size. In these networks, even when the coherence is absent, adding a fraction s of random connections leads to an enhancement of coherence proportional to s. Our results provide a way to control the emergent properties by the manipulation of the dynamics of the elements and the network connectivity.

4.
Sci Rep ; 13(1): 16994, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813886

RESUMO

Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF). The fully automated method uses successive applications of antibody incubation and elution, and in-situ imaging enabled by an integrated microscope and a microfluidic chip that provides optimized optical access to the sample. We show seqIF data on different sample types such as tumor and healthy tissue, including 40-plex on a single tissue section that is obtained in less than 24 h, using off-the-shelf antibodies. We also present extensive characterization of the developed method, including elution efficiency, epitope stability, repeatability and reproducibility, signal uniformity, and dynamic range, in addition to marker and panel optimization strategies. The streamlined workflow using off-the-shelf antibodies, data quality enabling downstream analysis, and ease of reaching hyperplex levels make seqIF suitable for immune-oncology research and other disciplines requiring spatial analysis, paving the way for its adoption in clinical settings.


Assuntos
Anticorpos , Proteômica , Proteômica/métodos , Reprodutibilidade dos Testes , Imunofluorescência , Biomarcadores
5.
Sci Adv ; 8(28): eabm8310, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857524

RESUMO

A central issue in the study of large complex network systems, such as power grids, financial networks, and ecological systems, is to understand their response to dynamical perturbations. Recent studies recognize that many real networks show nonnormality and that nonnormality can give rise to reactivity-the capacity of a linearly stable system to amplify its response to perturbations, oftentimes exciting nonlinear instabilities. Here, we identify network structural properties underlying the pervasiveness of nonnormality and reactivity in real directed networks, which we establish using the most extensive dataset of such networks studied in this context to date. The identified properties are imbalances between incoming and outgoing network links and paths at each node. On the basis of this characterization, we develop a theory that quantitatively predicts nonnormality and reactivity and explains the observed pervasiveness. We suggest that these results can be used to design, upgrade, control, and manage networks to avoid or promote network instabilities.

6.
Phys Rev E ; 105(2-1): 024206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291153

RESUMO

The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this effect impedes unbiased comparison between different time episodes. We study the impact of this effect on recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time series. A constrained randomization approach is put forward to correct for the biased recurrence quantification measures. This strategy involves the generation of a type of time series and time axis surrogates which we call sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with enhanced El Niño-Southern Oscillation and tropical cyclone activity.

7.
Nat Commun ; 13(1): 4849, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977934

RESUMO

Networks of weakly coupled oscillators had a profound impact on our understanding of complex systems. Studies on model reconstruction from data have shown prevalent contributions from hypernetworks with triplet and higher interactions among oscillators, in spite that such models were originally defined as oscillator networks with pairwise interactions. Here, we show that hypernetworks can spontaneously emerge even in the presence of pairwise albeit nonlinear coupling given certain triplet frequency resonance conditions. The results are demonstrated in experiments with electrochemical oscillators and in simulations with integrate-and-fire neurons. By developing a comprehensive theory, we uncover the mechanism for emergent hypernetworks by identifying appearing and forbidden frequency resonant conditions. Furthermore, it is shown that microscopic linear (difference) coupling among units results in coupled mean fields, which have sufficient nonlinearity to facilitate hypernetworks. Our findings shed light on the apparent abundance of hypernetworks and provide a constructive way to predict and engineer their emergence.


Assuntos
Neurônios , Neurônios/fisiologia
8.
Phys Rev E ; 104(3-2): 039904, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654215

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.90.042919.

9.
Phys Rev E ; 97(1-1): 012312, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448424

RESUMO

We have introduced a multiplex recurrence network approach by combining recurrence networks with the multiplex network approach in order to investigate multivariate time series. The potential use of this approach is demonstrated on coupled map lattices and a typical example from palaeobotany research. In both examples, topological changes in the multiplex recurrence networks allow for the detection of regime changes in their dynamics. The method goes beyond classical interpretation of pollen records by considering the vegetation as a whole and using the intrinsic similarity in the dynamics of the different regional vegetation elements. We find that the different vegetation types behave more similarly when one environmental factor acts as the dominant driving force.

10.
Phys Rev E ; 93(6): 062211, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415259

RESUMO

Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

11.
Nat Commun ; 7: 12929, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666662

RESUMO

The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could 'lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see-saw relationship over the last 9,000 years-with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26172776

RESUMO

Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25375579

RESUMO

The Shannon entropy of a time series is a standard measure to assess the complexity of a dynamical process and can be used to quantify transitions between different dynamical regimes. An alternative way of quantifying complexity is based on state recurrences, such as those available in recurrence quantification analysis. Although varying definitions for recurrence-based entropies have been suggested so far, for some cases they reveal inconsistent results. Here we suggest a method based on weighted recurrence plots and show that the associated Shannon entropy is positively correlated with the largest Lyapunov exponent. We demonstrate the potential on a prototypical example as well as on experimental data of a chemical experiment.

14.
Balkan Med J ; 30(3): 296-300, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25207123

RESUMO

BACKGROUND: Metabolic syndrome is highly prevalent in the adult population worldwide. Education may play an important role in preventing metabolic syndrome in young adults, especially those who are attending university. Such adults are at a critical point in their lives and make their own lifestyle choices that can affect their future health. AIMS: The aims of this study were to determine the metabolic syndrome risk levels of students from the Faculty of Health Sciences. STUDY DESIGN: Survey design study. METHODS: In a questionnaire developed by the researchers to collect data in accordance with the relevant literature, the scale of the risk of metabolic syndrome was assessed. A stepwise logistic regression analysis was performed to determine the risks. RESULTS: Important risk factors for metabolic syndrome were found to be gender, weight gain, "stress eating" excessive amounts of food, sleeping for more than 8 hours a day, feeling tired after sleep, belonging to a divided family, and eating whilst working on the computer. CONCLUSION: The students from the Faculty of Health Sciences, particularly because they are trained in the health sector, are expected to have more information about the risk factors of metabolic syndrome, and take necessary precautions to prevent it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA