Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 529(7584): 80-3, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26675730

RESUMO

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.


Assuntos
Agricultura/história , Ecossistema , Atividades Humanas/história , Fenômenos Fisiológicos Vegetais , Animais , História Antiga , Humanos , América do Norte , Dinâmica Populacional , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 115(6): 1232-1237, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29282314

RESUMO

The environmental drivers of species distributions and abundances are at the core of ecological research. However, the effects of these drivers on human abundance are not well-known. Here, we report how net primary productivity, biodiversity, and pathogen stress affect human population density using global ethnographic hunter-gatherer data. Our results show that productivity has significant effects on population density globally. The most important direct drivers, however, depend on environmental conditions: biodiversity influences population density exclusively in low-productivity regions, whereas pathogen stress does so in high-productivity regions. Our results also indicate that subtropical and temperate forest biomes provide the highest carrying capacity for hunter-gatherer populations. These findings document that environmental factors play a key role in shaping global population density patterns of preagricultural humans.


Assuntos
Biodiversidade , Interações Hospedeiro-Patógeno/fisiologia , Densidade Demográfica , Altitude , Animais , Austrália , Aves , Florestas , Humanos , Mamíferos , Modelos Biológicos , América do Norte , Plantas
3.
Proc Natl Acad Sci U S A ; 113(39): 10908-13, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621451

RESUMO

At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity-productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity-productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23-1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity-productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction.


Assuntos
Biodiversidade , Mamíferos/fisiologia , Plantas/metabolismo , Animais , Botânica , Simulação por Computador , Europa (Continente) , Fósseis , Geografia , Modelos Teóricos , América do Norte , Paleontologia , Fatores de Tempo
4.
Proc Biol Sci ; 284(1849)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28202809

RESUMO

Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context.


Assuntos
Evolução Biológica , Tamanho Corporal , Mamíferos/anatomia & histologia , Animais , Teorema de Bayes , Europa (Continente) , América do Norte , Filogenia
5.
J Hum Evol ; 108: 31-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622930

RESUMO

Damiao, Inner Mongolia, has three main fossil horizons representing the early, middle, and late Miocene. The middle Miocene locality DM01 is the only primate locality from the region and also represents the latest occurrence of pliopithecoids in northern China. The presence of pliopithecoid primates in central Asia after the middle Miocene climatic optimum seems to contradict the general trend of strengthening climatic zonality and increasing aridity. To investigate this enigma, we employ faunal similarity, ecometrics, and stable isotope analysis. Our results support previous inferences concerning the presence of locally humid environments within the increasingly arid surroundings that characterized central Asia. Hypsodonty, estimated mean annual precipitation (MAP), local sedimentology, and large mammal fossils suggest more humid and possibly more forested and wooded environments for the DM01 locality. We compared our results with the adjacent fossil-rich middle Miocene Tunggur localities. However, the small mammal fauna and isotope data are consistent with a mosaic of forest and grassland environment for all Damiao localities. Based on our results, Tunggur may have been too seasonal or not sufficiently humid for pliopithecids. This is supported by the higher mean hypsodonty and lower estimated MAP estimates, as well as slightly higher δ13C values. We suggest that DM01, the driest known Asian pliopithecid locality, may have been a more humid refugium within a generally drier regional context.


Assuntos
Ecossistema , Fósseis , Primatas , Animais , China , Mudança Climática , Mamíferos
9.
Proc Biol Sci ; 282(1809): 20150136, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26041349

RESUMO

Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene-Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66-23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50-37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift.


Assuntos
Evolução Biológica , Mudança Climática , Extinção Biológica , Mamíferos/fisiologia , Animais , Europa (Continente) , Fósseis , Fenômenos Geológicos , América do Norte , Temperatura
10.
Science ; 380(6648): 948-954, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262170

RESUMO

Measurement systems are important drivers of cultural and technological evolution. However, the evolution of measurement is still insufficiently understood. Many early standardized measurement systems evolved from body-based units of measure, such as the cubit and fathom, but researchers have rarely studied how or why body-based measurement has been used. We documented body-based units of measure in 186 cultures, illustrating how body-based measurement is an activity common to cultures around the world. Here, we describe the cultural and technological domains these units are used in. We argue that body-based units have had, and may still have, advantages over standardized systems, such as in the design of ergonomic technologies. This helps explain the persistence of body-based measurement centuries after the first standardized measurement systems emerged.

11.
NPJ Biodivers ; 2(1): 16, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39242840

RESUMO

The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.

12.
Proc Biol Sci ; 279(1739): 2793-9, 2012 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-22456884

RESUMO

We have recently shown that rainfall, one of the main climatic determinants of terrestrial net primary productivity (NPP), can be robustly estimated from mean molar tooth crown height (hypsodonty) of mammalian herbivores. Here, we show that another functional trait of herbivore molar surfaces, longitudinal loph count, can be similarly used to extract reasonable estimates of rainfall but also of temperature, the other main climatic determinant of terrestrial NPP. Together, molar height and the number of longitudinal lophs explain 73 per cent of the global variation in terrestrial NPP today and resolve the main terrestrial biomes in bivariate space. We explain the functional interpretation of the relationships between dental function and climate variables in terms of long- and short-term demands. We also show how the spatially and temporally dense fossil record of terrestrial mammals can be used to investigate the relationship between biodiversity and productivity under changing climates in geological time. The placement of the fossil chronofaunas in biome space suggests that they most probably represent multiple palaeobiomes, at least some of which do not correspond directly to any biomes of today's world.


Assuntos
Ecossistema , Herbivoria/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Fósseis , Modelos Logísticos , Mamíferos/genética , Chuva , Temperatura , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 106(29): 11867-71, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19571012

RESUMO

The Late Miocene development of faunas and environments in western Eurasia is well known, but the climatic and environmental processes that controlled its details are incompletely understood. Here we map the rise and fall of the classic Pikermian fossil mammal chronofauna between 12 and 4.2 Ma, using genus-level faunal similarity between localities. To directly relate land mammal community evolution to environmental change, we use the hypsodonty paleoprecipitation proxy and paleoclimate modeling. The geographic distribution of faunal similarity and paleoprecipitation in successive timeslices shows the development of the open biome that favored the evolution and spread of the open-habitat adapted large mammal lineages. In the climate model run, this corresponds to a decrease in precipitation over its core area south of the Paratethys Sea. The process began in the latest Middle Miocene and climaxed in the medial Late Miocene, about 7-8 million years ago. The geographic range of the Pikermian chronofauna contracted in the latest Miocene, a time of increasing summer drought and regional differentiation of habitats in Eastern Europe and Southwestern Asia. Its demise at the Miocene-Pliocene boundary coincides with an environmental reversal toward increased humidity and forestation, changes inevitably detrimental to open-adapted, wide-ranging large mammals.


Assuntos
Clima , Fósseis , Animais , Ásia , Geografia , História Antiga , Região do Mediterrâneo , Chuva , Temperatura
14.
Nat Commun ; 13(1): 3940, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803946

RESUMO

Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (~30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (~20,000-14,000 ybp). From ~10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at ~10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (~2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back ~10,000 years.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis , Mamíferos , Agricultura , Animais , Tamanho Corporal , Ecossistema , Humanos , América do Norte , Crescimento Demográfico
15.
Proc Biol Sci ; 278(1709): 1131-40, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21227966

RESUMO

Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time-an approach we call 'ecometrics'. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.


Assuntos
Mudança Climática , Adaptação Biológica , Animais , Evolução Biológica , Ecossistema , Dinâmica Populacional , Especificidade da Espécie
16.
Evolution ; 75(5): 1046-1060, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724456

RESUMO

Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.


Assuntos
Mudança Climática , Ecossistema , Aves Canoras/classificação , Altitude , Animais , Evolução Biológica , Filogenia , Aves Canoras/fisiologia
17.
Trends Ecol Evol ; 36(1): 61-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067015

RESUMO

Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.


Assuntos
Biodiversidade , Fósseis , Evolução Biológica , Mudança Climática
18.
Duodecim ; 125(18): 2017-22, 2009.
Artigo em Fi | MEDLINE | ID: mdl-19860085

RESUMO

True teeth developed approximately 230 million years ago. Mammals have an accurate dental occlusion, whereby the renewal of teeth has reduced to two sets of teeth. Since the shape of teeth does not change after eruption, they form a good subject for developmental biology research. Research on fossil material and current ecology of mammals has opened up new perspectives into the research of tooth shape, food, ecology and climate.


Assuntos
Evolução Biológica , Dente , Biologia do Desenvolvimento , Fósseis , Humanos
19.
Science ; 365(6459): 1305-1308, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31604240

RESUMO

Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-occurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations.


Assuntos
Ecossistema , Extinção Biológica , Fósseis , Mamíferos , Animais , Mudança Climática , América do Norte , Paleontologia , Dinâmica Populacional
20.
Nat Ecol Evol ; 2(2): 402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335578

RESUMO

In the version of this Article originally published, each of the five panels in Fig. 5 incorrectly contained a black diagonal line across the plot. This has now been corrected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA