Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Rev Lett ; 131(22): 222503, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101393

RESUMO

Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

2.
Phys Rev Lett ; 131(22): 222502, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101341

RESUMO

Collinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15) fm. This differs by 4.5 standard deviations from the extrapolated value used to calculate the isospin-symmetry breaking corrections in the superallowed ß decay of ^{26m}Al. Its corrected Ft value, important for the estimation of V_{ud} in the Cabibbo-Kobayashi-Maskawa matrix, is thus shifted by 1 standard deviation to 3071.4(1.0) s.

3.
Eur Phys J A Hadron Nucl ; 59(7): 169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502124

RESUMO

In a measurement of isomeric yield-ratios in fission, the Phase-Imaging Ion-Cyclotron-Resonance technique, which projects the radial motions of ions in the Penning trap (JYFLTRAP) onto a position-sensitive micro-channel plate detector, has been applied. To obtain the yield ratio, that is the relative population of two states of an isomer pair, a novel analysis procedure has been developed to determine the number of detected ions in each state, as well as corrections for the detector efficiency and decay losses. In order to determine the population of the states in cases where their mass difference is too small to reach full separation, a Bayesian Gaussian Mixture model was implemented. The position-dependent efficiency of the micro-channel plate detector was calibrated by mapping it with 133Cs+ ions, and a Gaussian Process was trained with the position data to construct an efficiency function that could be used to correct the recorded distributions. The obtained numbers of counts of excited and ground-state ions were used to derive the isomeric yield ratio, taking into account decay losses as well as feeding from precursors.

4.
Phys Rev Lett ; 128(15): 152501, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499902

RESUMO

The impact of nuclear deformation can been seen in the systematics of nuclear charge radii, with radii generally expanding with increasing deformation. In this Letter, we present a detailed analysis of the precise relationship between nuclear quadrupole deformation and the nuclear size. Our approach combines the first measurements of the changes in the mean-square charge radii of well-deformed palladium isotopes between A=98 and A=118 with nuclear density functional calculations using Fayans functionals, specifically Fy(std) and Fy(Δr,HFB), and the UNEDF2 functional. The changes in mean-square charge radii are extracted from collinear laser spectroscopy measurements on the 4d^{9}5s ^{3}D_{3}→4d^{9}5p ^{3}P_{2} atomic transition. The analysis of the Fayans functional calculations reveals a clear link between a good reproduction of the charge radii for the neutron-rich Pd isotopes and the overestimated odd-even staggering: Both aspects can be attributed to the strength of the pairing correlations in the particular functional which we employ.

5.
Phys Rev Lett ; 127(27): 272301, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061421

RESUMO

The ground state to ground state electron-capture Q value of ^{159}Dy (3/2^{-}) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent ^{159}Dy and the decay daughter ^{159}Tb ions using the novel phase-imaging ion-cyclotron resonance technique. The Q values for allowed Gamow-Teller transition to 5/2^{-} and the third-forbidden unique transition to 11/2^{+} state with excitation energies of 363.5449(14) keV and 362.050(40) keV in ^{159}Tb were determined to be 1.18(19) keV and 2.68(19) keV, respectively. The high-precision Q value of transition 3/2^{-}→5/2^{-} from this work, revealing itself as the lowest electron-capture Q value, is used to unambiguously characterize all the possible lines that are present in its electron-capture spectrum. We performed atomic many-body calculations for both transitions to determine electron-capture probabilities from various atomic orbitals and found an order of magnitude enhancement in the event rates near the end point of energy spectrum in the transition to the 5/2^{-} nuclear excited state, which can become very interesting once the experimental challenges of identifying decays into excited states are overcome. The transition to the 11/2^{+} state is strongly suppressed and found unsuitable for measuring the neutrino mass. These results show that the electron-capture in the ^{159}Dy atom, going to the 5/2^{-} state of the ^{159}Tb nucleus, is a new candidate that may open the way to determine the electron-neutrino mass in the sub-eV region by studying electron-capture. Further experimental feasibility studies, including coincidence measurements with realistic detectors, will be of great interest.

6.
Phys Rev Lett ; 124(22): 222503, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567932

RESUMO

The ground-state-to-ground-state ß-decay Q value of ^{135}Cs(7/2^{+})→^{135}Ba(3/2^{+}) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between ^{135}Cs(7/2^{+}) and ^{135}Ba(3/2^{+}). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique ß^{-}-decay transition ^{135}Cs(7/2^{+})→^{135}Ba(11/2^{-}) is a candidate for antineutrino mass measurements with an ultralow Q value of 0.44(31) keV. This Q value is almost an order of magnitude smaller than those of nuclides presently used in running or planned direct (anti)neutrino mass experiment.

8.
Phys Rev Lett ; 123(26): 262701, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951442

RESUMO

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted by a thermonuclear explosion rather than collapsing to form a neutron star. Importantly, our measurement resolves the last remaining nuclear physics uncertainty in the final evolution of degenerate oxygen-neon stellar cores, allowing future studies to address the critical role of convection, which at present is poorly understood.

9.
Phys Rev Lett ; 122(4): 042502, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768318

RESUMO

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The ß-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb ß decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the ß decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.

10.
Phys Rev Lett ; 120(26): 262701, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004755

RESUMO

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S_{2n} and neutron pairing energy metrics D_{n}. The data do not support the existence of a subshell closure at N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated r-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar r-process abundances are observed.

11.
Phys Rev Lett ; 116(7): 072501, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943530

RESUMO

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double ß decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single ß decay to ^{96}Mo, which are Q_{ß}(^{96}Zr)=163.96(13), Q_{ßß}(^{96}Zr)=3356.097(86), and Q_{ß}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single ß-decay Q value, which has never been determined directly. The single ß decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ßß decay, and its observation can provide one of the most direct tests of the neutrinoless ßß-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single ß-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single ß-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}.

12.
Phys Rev Lett ; 115(6): 062502, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26296113

RESUMO

Total absorption spectroscopy is used to investigate the ß-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich (94)Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n,γ) cross section that would have an impact on r process abundance calculations.

13.
Phys Rev Lett ; 115(10): 102503, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382674

RESUMO

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

14.
Phys Rev Lett ; 109(3): 032501, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861839

RESUMO

Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models.

15.
Nat Commun ; 12(1): 4596, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321487

RESUMO

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development.

16.
Phys Rev Lett ; 105(20): 202501, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231223

RESUMO

The ß feeding probability of (102,104,105,106,107)Tc, 105Mo, and 101Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the γ component of the decay heat for 239Pu in the 4-3000 s range.

17.
Phys Rev Lett ; 103(25): 252501, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366251

RESUMO

The superallowed beta-decay Q(EC) values of (34)Cl and (38)K(m) have been measured with an online Penning trap to be 5491.662(47) keV and 6044.223(41) keV, respectively. The new values are more precise than the previous high-precision reaction-based values but are consistent with them and establish that there are no significant systematic differences between the two types of measurements.

18.
Appl Radiat Isot ; 71(1): 34-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085548

RESUMO

Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.

19.
Appl Radiat Isot ; 68(3): 450-3, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20044263

RESUMO

A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, (133m)Xe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA