Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(5): e1008921, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983922

RESUMO

Cellular and intracellular processes are inherently complex due to the large number of components and interactions, which are often nonlinear and occur at different spatiotemporal scales. Because of this complexity, mathematical modeling is increasingly used to simulate such systems and perform experiments in silico, many orders of magnitude faster than real experiments and often at a higher spatiotemporal resolution. In this article, we will focus on the generic modeling process and illustrate it with an example model of membrane lipid turnover.


Assuntos
Biologia Celular , Modelos Biológicos , Biologia Celular/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Conceitos Matemáticos , Lipídeos de Membrana/metabolismo , Dinâmica não Linear , Software , Análise Espaço-Temporal
2.
Biophys J ; 120(20): 4360-4377, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34509508

RESUMO

Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal , Fosfoproteínas/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA