Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Genet ; 16: 61, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26285866

RESUMO

BACKGROUND: Ataxia with oculomotor apraxia type 1 is an autosomal-recessive neurodegenerative disorder characterized by a childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia and a severe primary motor peripheral axonal motor neuropathy. Ataxia with oculomotor apraxia type 1 is caused by bi-allelic mutations in APTX (chromosome 9p21.1). CASE PRESENTATION: Our patient has a clinical presentation that is typical for ataxia with oculomotor apraxia type 1 with no particularly severe phenotype. Multiplex Ligation-dependent Probe Amplification analysis resulted in the identification of a homozygous deletion of all coding APTX exons (3 to 9). SNP array analysis using the Illumina Infinium CytoSNP-850 K microarray indicated that the deletion was about 62 kb. Based on the SNP array results, the breakpoints were found using direct sequence analysis: c.-5 + 1225_*44991del67512, p.0?. Both parents were heterozygous for the deletion. Homozygous complete APTX deletions have been described in literature for two other patients. We obtained a sample from one of these two patients and characterized the deletion (156 kb) as c.-23729_*115366del155489, p.0?, including the non-coding exons 1A and 2 of APTX. The more severe phenotype reported for this patient is not observed in our patient. It remains unclear whether the larger size of the deletion (156 kb vs 62 kb) plays a role in the phenotype (no extra genes are deleted). CONCLUSION: Here we described an ataxia with oculomotor apraxia type 1 patient who has a homozygous deletion of the complete coding region of APTX. In contrast to the patient with the large deletion, our patient does not have a severe phenotype. More patients with deletions of APTX are required to investigate a genotype-phenotype effect.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas Nucleares/deficiência , Fenótipo , Degenerações Espinocerebelares/genética , Sequência de Bases , Eletromiografia , Deleção de Genes , Humanos , Masculino , Análise em Microsséries , Dados de Sequência Molecular , Marrocos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Ataxias Espinocerebelares/congênito
2.
Insights Imaging ; 3(3): 277-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22696089

RESUMO

BACKGROUND: Prenatal awareness of an anomaly ensures better management of the pregnant patient, enables medical teams and parents to prepare for the delivery, and is very useful for making decisions about postnatal treatment. Congenital malformations of the thorax, abdomen, and gastrointestinal tract are common. As various organs can be affected, accurate location and morphological characterization are important for accurate diagnosis. METHODS: Magnetic resonance imaging (MRI) enables excellent discrimination among tissues, making it a useful adjunct to ultrasonography (US) in the study of fetal morphology and pathology. RESULTS: MRI is most useful when US has detected or suspected anomalies, and more anomalies are detected when MRI and US findings are assessed together. CONCLUSION: We describe the normal appearance of fetal thoracic, abdominal, and gastrointestinal structures on MRI, and we discuss the most common anomalies involving these structures and the role of MRI in their study. TEACHING POINTS: • To learn about the normal anatomy of the fetal chest, abdomen, and GI tract on MRI. • To recognize the MR appearance of congenital anomalies of the lungs and the digestive system. • To understand the value of MRI when compared to US in assessing fetal anomalies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA