RESUMO
STUDY DESIGN: Double-blind, randomized, placebo-controlled, parallel-group multicentric phase IIA clinical trial. OBJECTIVE: To assess the safety and tolerability of oral administration of NFX-88 in subjects with chronic spinal cord injury (SCI) and explore its efficacy in pain control. SETTING: A total of 7 spinal cord injury rehabilitation units in Spain. METHODS: A total of 61 adult with traumatic complete or incomplete spinal cord injury (C4-T12 level), were randomised 1:1:1:1 to a placebo, NFX88 1.05 g, 2.1 g, 4.2 g/day for up to 12 weeks. The placebo or NFX-88 was administered as add-on therapy to pre-existing pregabalin (150-300 mg per day). Safety and tolerability were evaluated, and the Visual Analogue Scale (VAS) was the primary measure to explore the efficacy of NFX-88 in pain control. RESULTS: No severe treatment-related adverse effects were reported for any of the four study groups. 44 SCI individuals completed the study and were analysed. The data obtained from the VAS analysis and the PainDETECT Questionnaire (PD-Q) suggested that the combination of NFX88 with pregabalin is more effective than pregabalin with placebo at reducing neuropathic pain (NP) in individuals with SCI and that the dose 2.10 g/day causes the most dramatic pain relief. CONCLUSIONS: NFX88 treatment was found to be highly safe and well tolerated, with the dose of 2.10 g/day being the most effective at causing pain relief. Thus, the promising efficacy of this first-in-class lipid mediator deserves further consideration in future clinical trials.
Assuntos
Neuralgia , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Administração Oral , Analgésicos/administração & dosagem , Pregabalina/administração & dosagem , Resultado do Tratamento , Medição da Dor , Idoso , Adulto JovemRESUMO
BACKGROUND: The first-in-class brain-penetrating synthetic hydroxylated lipid idroxioleic acid (2-OHOA; sodium 2-hydroxyoleate), activates sphingomyelin synthase expression and regulates membrane-lipid composition and mitochondrial energy production, inducing cancer cell autophagy. We report the findings of a multicentric first-in-human Phase 1/2A trial (NCT01792310) of 2-OHOA, identifying the maximum tolerated dose (MTD) and assessing safety and preliminary efficacy. METHODS: We performed an open-label, non-randomised trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and anti-tumour activity of daily oral treatment with 2-OHOA monotherapy (BID/TID) in 54 patients with glioma and other advanced solid tumours. A dose-escalation phase using a standard 3 + 3 design was performed to determine safety and tolerability. This was followed by two expansion cohorts at the MTD to determine the recommended Phase-2 dose (RP2D). RESULTS: In total, 32 recurrent patients were enrolled in the dose-escalation phase (500-16,000 mg/daily). 2-OHOA was rapidly absorbed with dose-proportional exposure. Treatment was well-tolerated overall, with reversible grade 1-2 nausea, vomiting, and diarrhoea as the most common treatment-related adverse events (AEs). Four patients had gastrointestinal dose-limiting toxicities (DLTs) of nausea, vomiting, diarrhoea (three patients at 16,000 mg and one patient at 12,000 mg), establishing an RP2D at 12,000 mg/daily. Potential activity was seen in patients with recurrent high-grade gliomas (HGG). Of the 21 patients with HGG treated across the dose escalation and expansion, 5 (24%) had the clinical benefit (RANO CR, PR and SD >6 cycles) with one exceptional response lasting >2.5 years. CONCLUSIONS: 2-OHOA demonstrated a good safety profile and encouraging activity in this difficult-to-treat malignant brain-tumour patient population, placing it as an ideal potential candidate for the treatment of glioma and other solid tumour malignancies. CLINICAL TRIAL REGISTRATION: EudraCT registration number: 2012-001527-13; Clinicaltrials.gov registration number: NCT01792310.
Assuntos
Glioma , Neoplasias , Humanos , Diarreia , Glioma/tratamento farmacológico , Dose Máxima Tolerável , Náusea , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Esfingolipídeos/uso terapêutico , VômitoRESUMO
Since penicillin was discovered, antibiotics have been critical in the fight against infections. However, antibiotic misuse has led to drug resistance, which now constitutes a serious health problem. In this context, antimicrobial peptides (AMPs) constitute a natural group of short proteins, varying in structure and length, that act against certain types of bacterial pathogens. The antimicrobial peptide 1018-K6 (VRLIVKVRIWRR- NH2) has significant bactericidal and antibiofilm activity against Listeria monocytogenes isolates, and against different strains and serotypes of Salmonella. Here, the mechanism of action of 1018-K6 was explored further to understand the peptide-membrane interactions relevant to its activity, and to define their determinants. We combined studies with model synthetic membranes (liposomes) and model biological membranes, assessing the absorption maximum and the quenching of 1018-K6 fluorescence in aqueous and lipid environments, the self-quenching of carboxyfluorescein, as well as performing lipid sedimentation assays. The data obtained reflect the differential interactions of the 1018-K6 peptide with eukaryotic and prokaryotic membranes, and the specific interactions and mechanisms of action in the three prokaryotic species studied: Salmonella Typhimurium2GN, Escherichia coli3GN, and Staphylococcus aureus3GP. The AMP 1018-K6 is a candidate to prevent (food preservation) or treat (antibiotic use) infections caused by certain pathogenic bacteria, especially some that are resistant to current antibiotics.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Listeria monocytogenes , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Escherichia coli , Eucariotos , Lipídeos , Lipossomos/química , Testes de Sensibilidade Microbiana , PenicilinasRESUMO
Pancreatic cancer has a high mortality rate due to its aggressive nature and high metastatic rate. When coupled to the difficulties in detecting this type of tumor early and the lack of effective treatments, this cancer is currently one of the most important clinical challenges in the field of oncology. Melitherapy is an innovative therapeutic approach that is based on modifying the composition and structure of cell membranes to treat different diseases, including cancers. In this context, 2-hydroxycervonic acid (HCA) is a melitherapeutic agent developed to combat pancreatic cancer cells, provoking the programmed cell death by apoptosis of these cells by inducing ER stress and triggering the production of ROS species. The efficacy of HCA was demonstrated in vivo, alone and in combination with gemcitabine, using a MIA PaCa-2 cell xenograft model of pancreatic cancer in which no apparent toxicity was evident. HCA is metabolized by α-oxidation to C21:5n-3 (heneicosapentaenoic acid), which in turn also showed anti-proliferative effect in these cells. Given the unmet clinical needs associated with pancreatic cancer, the data presented here suggest that the use of HCA merits further study as a potential therapy for this condition.
Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Hidroxiácidos , Imidazóis , Neoplasias Pancreáticas/patologia , Sulfonamidas , Tiofenos , Neoplasias PancreáticasRESUMO
Biological membranes are key elements for the maintenance of cell architecture and physiology. Beyond a pure barrier separating the inner space of the cell from the outer, the plasma membrane is a scaffold and player in cell-to-cell communication and the initiation of intracellular signals among other functions. Critical to this function is the plasma membrane compartmentalization in lipid microdomains that control the localization and productive interactions of proteins involved in cell signal propagation. In addition, cells are divided into compartments limited by other membranes whose integrity and homeostasis are finely controlled, and which determine the identity and function of the different organelles. Here, we review current knowledge on membrane lipid composition in the plasma membrane and endomembrane compartments, emphasizing its role in sustaining organelle structure and function. The correct composition and structure of cell membranes define key pathophysiological aspects of cells. Therefore, we explore the therapeutic potential of manipulating membrane lipid composition with approaches like membrane lipid therapy, aiming to normalize cell functions through the modification of membrane lipid bilayers.
Assuntos
Membrana Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Lipídeos de Membrana/química , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Compartimento Celular , Membrana Celular/química , Membrana Celular/metabolismo , Ácidos Graxos Insaturados/uso terapêutico , Humanos , Lipídeos de Membrana/metabolismoRESUMO
Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.
Assuntos
Materiais Biomiméticos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Materiais Biomiméticos/uso terapêutico , Estabilidade Enzimática , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica/efeitos dos fármacos , TemperaturaRESUMO
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bbamem.2017.05.017. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
RESUMO
Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Assuntos
Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Membrana Celular/fisiologia , Desenho de Fármacos , Humanos , Inflamação/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gßγ and Gαßγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Assuntos
Proteínas de Ligação ao GTP/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Diterpenos/farmacologia , Proteínas de Membrana/química , Multimerização ProteicaRESUMO
We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aß42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Química Encefálica/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Lipídeos/análise , Atividade Motora/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster , Ácidos Graxos/análise , Hidroxilação , CamundongosRESUMO
Heterotrimeric G proteins are peripheral membrane proteins that frequently localize to the plasma membrane where their presence in molar excess over G protein coupled receptors permits signal amplification. Their distribution is regulated by protein-lipid interactions, which has a clear influence on their activity. Gßγ dimer drives the interaction between G protein heterotrimers with cell membranes. We focused our study on the role of the C-terminal region of the Gγ2 protein in G protein interactions with cell membranes. The Gγ2 subunit is modified at cysteine (Cys) 68 by the addition of an isoprenyl lipid, which is followed by the proteolytic removal of the last three residues that leaves an isoprenylated and carboxyl methylated Cys-68 as the terminal amino acid. The role of Cys isoprenylation of the CAAX box has been defined for other proteins, yet the importance of proteolysis and carboxyl methylation of isoprenylated proteins is less clear. Here, we showed that not only geranylgeranylation but also proteolysis and carboxyl methylation are essential for the correct localization of Gγ2 in the plasma membrane. Moreover, we showed the importance of electrostatic interactions between the inner leaflet of the plasma membrane and the positively charged C-terminal domain of the Gγ2 subunit (amino acids Arg-62, Lys-64 and Lys-65) as a second signal to reach the plasma membrane. Indeed, single or multiple point mutations at Gγ2 C-terminal amino acids have a significant effect on Gγ2 protein-plasma membrane interactions and its localization to charged Ld (liquid disordered) membrane microdomains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Assuntos
Membrana Celular/química , Subunidades gama da Proteína de Ligação ao GTP/química , Lipídeos de Membrana/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Diterpenos/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/análise , Humanos , Ligação Proteica , Prenilação de ProteínaRESUMO
Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doença de Depósito de Glicogênio/enzimologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/enzimologia , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Biologia Computacional , Sistema da Enzima Desramificadora do Glicogênio/efeitos dos fármacos , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Dados de Sequência Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Estrutura Terciária de Proteína , Alinhamento de SequênciaRESUMO
G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.
Assuntos
Membrana Celular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Membrana Celular/química , Colesterol/química , Colesterol/metabolismo , Sequência Conservada , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Expressão Gênica , Lipoilação , Microdomínios da Membrana , Dados de Sequência Molecular , Ácidos Mirísticos/química , Ácidos Mirísticos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Células Sf9 , Transdução de Sinais , Esfingomielinas/química , Esfingomielinas/metabolismo , SpodopteraRESUMO
Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol.
Assuntos
Antineoplásicos/farmacologia , Lipídeos/análise , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Ácidos Oleicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , CamundongosRESUMO
This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Assuntos
Estruturas da Membrana Celular/química , Fenômenos Fisiológicos Celulares , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Microdomínios da Membrana/química , Estruturas da Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismoRESUMO
This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glioma/tratamento farmacológico , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glioma/metabolismo , Glioma/patologia , Humanos , Lipídeos de Membrana/metabolismoRESUMO
Alzheimer's disease (AD) is a neurodegenerative pathology with relevant unmet therapeutic needs. Both natural aging and AD have been associated with a significant decline in the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), and accordingly, administration of DHA has been proposed as a possible treatment for this pathology. However, recent clinical trials in mild-to-moderately affected patients have been inconclusive regarding the real efficacy of DHA in halting this disease. Here, we show that the novel hydroxyl-derivative of DHA (2-hydroxydocosahexaenoic acid - OHDHA) has a strong therapeutic potential to treat AD. We demonstrate that OHDHA administration increases DHA levels in the brain of a transgenic mouse model of AD (5xFAD), as well as those of phosphatidylethanolamine (PE) species that carry long polyunsaturated fatty acids (PUFAs). In 5xFAD mice, administration of OHDHA induced lipid modifications that were paralleled with a reduction in amyloid-ß (Αß) accumulation and full recovery of cognitive scores. OHDHA administration also reduced Aß levels in cellular models of AD, in association with alterations in the subcellular distribution of secretases and reduced Aß-induced tau protein phosphorylation as well. Furthermore, OHDHA enhanced the survival of neuron-like differentiated cells exposed to different insults, such as oligomeric Aß and NMDA-mediated neurotoxicity. These results were supported by model membrane studies in which incorporation of OHDHA into lipid-raft-like vesicles was shown to reduce the binding affinity of oligomeric and fibrillar Aß to membranes. Finally, the OHDHA concentrations used here did not produce relevant toxicity in zebrafish embryos in vivo. In conclusion, we demonstrate the pleitropic effects of OHDHA that might prove beneficial to treat AD, which suggests that an upstream event, probably the modulation of the membrane lipid composition and structure, influences cellular homeostasis reversing the neurodegenerative process. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Lipídeos de Membrana/química , Neuroblastoma/tratamento farmacológico , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/química , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Humanos , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Presenilina-1/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Lipossomas Unilamelares/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Assuntos
Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Membrana Celular/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Humanos , Bicamadas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Nus , Modelos Químicos , Simulação de Dinâmica Molecular , Ácidos Oleicos/química , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Células Tumorais Cultivadas , Difração de Raios XRESUMO
The unfolded protein response (UPR) and autophagy are two cellular processes involved in the clearing of intracellular misfolded proteins. Both pathways are targets for molecules that may serve as treatments for several diseases, including neurodegenerative disorders like Alzheimer's disease (AD). In the present work, we show that 2-hydroxy-DHA (HDHA), a docosahexaenoic acid (DHA) derivate that restores cognitive function in a transgenic mouse model of AD, modulates UPR and autophagy in differentiated neuron-like SH-SY5Y cells. Mild therapeutic HDHA exposure induced UPR activation, characterized by the up-regulation of the molecular chaperone Bip as well as PERK-mediated stimulation of eIF2α phosphorylation. Key proteins involved in initiating autophagy, such as beclin-1, and several Atg proteins involved in autophagosome maturation (Atg3, Atg5, Atg12 and Atg7), were also up-regulated on exposure to HDHA. Moreover, when HDHA-mediated autophagy was studied after amyloid-ß peptide (Aß) stimulation to mimic the neurotoxic environment of AD, it was associated with increased cell survival, suggesting that HDHA driven modulation of this process at least in part mediates the neuroprotective effects of this new anti-neurodegenerative drug. The present results in part explain the pharmacological effects of HDHA inducing full recovery of the cognitive scores in murine models of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Hidroxiácidos/farmacologia , Fármacos Neuroprotetores/farmacologia , Resposta a Proteínas não Dobradas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidroxiácidos/uso terapêutico , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.