Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468105

RESUMO

SUMOylation is a post-translational modification frequently found on nuclear proteins, including transcription factors (TFs) and coactivators. By controlling the activity of several TFs, SUMOylation may have far-reaching effects. MYB is an example of a developmental TF subjected to SUMO-mediated regulation, through both SUMO conjugation and SUMO binding. How SUMO affects MYB target genes is unknown. Here, we explored the global effect of reduced SUMOylation of MYB on its downstream gene programs. RNA-Seq in K562 cells after MYB knockdown and rescue with mutants having an altered SUMO status revealed a number of differentially regulated genes and distinct gene ontology term enrichments. Clearly, the SUMO status of MYB both quantitatively and qualitatively affects its regulome. The transcriptome data further revealed that MYB upregulates the SUMO protease SENP1, a key enzyme that removes SUMO conjugation from SUMOylated proteins. Given this role of SENP1 in the MYB regulome, we expanded the analysis, mapped interaction partners of SENP1, and identified UXT as a novel player affecting the SUMO system by acting as a repressor of SENP1. MYB inhibits the expression of UXT suggesting that MYB is able not only to control a specific gene program directly but also indirectly by affecting the SUMO landscape through SENP1 and UXT. These findings suggest an autoactivation loop whereby MYB, through enhancing SENP1 and reducing UXT, is itself being activated by a reduced level of repressive SUMOylation. We propose that overexpressed MYB, seen in multiple cancers, may drive this autoactivation loop and contribute to oncogenic activation of MYB.


Assuntos
Proteínas de Ciclo Celular , Regulação da Expressão Gênica , Genes myb , Peptídeo Hidrolases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células K562 , Neoplasias/fisiopatologia , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Sumoilação , Ativação Transcricional
2.
Bioinformatics ; 38(3): 834-836, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586377

RESUMO

MOTIVATION: Mapping of chromatin accessibility landscapes in single-cells and the integration with gene expression enables a better understanding of gene regulatory mechanisms defining cell identities and cell-fate determination in development and disease. Generally, raw data generated from single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) are deposited in repositories that are generally inaccessible due to lack of in-depth knowledge of computational programming. RESULTS: We have developed ShinyArchR.UiO, an R-based shiny app, that facilitates scATAC-seq data accessibility and visualization in a user-friendly, interactive and open-source web interface. ShinyArchR.UiO is an application that can streamline collaborative efforts for interpretation of massive chromatin accessibility datasets and allow for open access data sharing for wider audiences. AVAILABILITY AND IMPLEMENTATION: https://Github.com/EskelandLab/ShinyArchRUiO and a demo server with a hematopoietic tutorial dataset https://cancell.medisin.uio.no/ShinyArchR.UiO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Análise de Célula Única
3.
BMC Neurosci ; 24(1): 56, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875799

RESUMO

BACKGROUND: Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. RESULTS: ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. CONCLUSIONS: ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.


Assuntos
Neuritos , Neurônios , Camundongos , Ratos , Animais , Humanos , Neuritos/fisiologia , Neurogênese/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Contagem de Células
4.
Toxicol Appl Pharmacol ; 449: 116130, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714712

RESUMO

Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 µM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein ß2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein ß3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of ß2-spectrin and disruption of the integrity of ß3-tubulin, both proteins of which play important roles in neuronal structure and function.


Assuntos
Acetaminofen , Plasticidade Neuronal , Acetaminofen/efeitos adversos , Animais , Linhagem Celular , Embrião de Galinha , Proteínas do Citoesqueleto , Feminino , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Espectrina , Tubulina (Proteína)
5.
Genes Dev ; 28(24): 2778-91, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512564

RESUMO

Although important for gene regulation, most studies of genome organization use either fluorescence in situ hybridization (FISH) or chromosome conformation capture (3C) methods. FISH directly visualizes the spatial relationship of sequences but is usually applied to a few loci at a time. The frequency at which sequences are ligated together by formaldehyde cross-linking can be measured genome-wide by 3C methods, with higher frequencies thought to reflect shorter distances. FISH and 3C should therefore give the same views of genome organization, but this has not been tested extensively. We investigated the murine HoxD locus with 3C carbon copy (5C) and FISH in different developmental and activity states and in the presence or absence of epigenetic regulators. We identified situations in which the two data sets are concordant but found other conditions under which chromatin topographies extrapolated from 5C or FISH data are not compatible. We suggest that products captured by 3C do not always reflect spatial proximity, with ligation occurring between sequences located hundreds of nanometers apart, influenced by nuclear environment and chromatin composition. We conclude that results obtained at high resolution with either 3C methods or FISH alone must be interpreted with caution and that views about genome organization should be validated by independent methods.


Assuntos
Cromatina/química , Cromatina/metabolismo , Genoma/genética , Hibridização in Situ Fluorescente/normas , Coloração e Rotulagem/normas , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Técnicas Genéticas/normas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Mutação , Proteínas do Grupo Polycomb/genética , Estrutura Terciária de Proteína
6.
J Biol Chem ; 293(40): 15439-15454, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30082317

RESUMO

The small ubiquitin-like modifier (SUMO) post-translationally modifies lysine residues of transcription factors and co-regulators and thereby contributes to an important layer of control of the activities of these transcriptional regulators. Likewise, deSUMOylation of these factors by the sentrin-specific proteases (SENPs) also plays a role in gene regulation, but whether SENPs functionally interact with other regulatory factors that control gene expression is unclear. In the present work, we focused on SENP1, specifically, on its role in activation of gene expression investigated through analysis of the SENP1 interactome, which revealed that SENP1 physically interacts with the chromatin remodeler chromodomain helicase DNA-binding protein 3 (CHD3). Using several additional methods, including GST pulldown and co-immunoprecipitation assays, we validated and mapped this interaction, and using CRISPR-Cas9-generated CHD3- and SENP1-KO cells (in the haploid HAP1 cell line), we investigated whether these two proteins are functionally linked in regulating chromatin remodeling and gene expression. Genome-wide ATAC-Seq analysis of the CHD3- and SENP1-KO cells revealed a large degree of overlap in differential chromatin openness between these two mutant cell lines. Moreover, motif analysis and comparison with ChIP-Seq profiles in K562 cells pointed to an association of CHD3 and SENP1 with CCCTC-binding factor (CTCF) and SUMOylated chromatin-associated factors. Lastly, genome-wide RNA-Seq also indicated that these two proteins co-regulate the expression of several genes. We propose that the functional link between chromatin remodeling by CHD3 and deSUMOylation by SENP1 uncovered here provides another level of control of gene expression.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Cisteína Endopeptidases/metabolismo , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Células COS , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatina/metabolismo , Cromatina/ultraestrutura , Clonagem Molecular , Cisteína Endopeptidases/genética , DNA Helicases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes/métodos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Células K562 , Leucócitos/metabolismo , Leucócitos/patologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
Nucleic Acids Res ; 45(13): 7681-7696, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28472346

RESUMO

The transcription factor c-Myb is involved in early differentiation and proliferation of haematopoietic cells, where it operates as a regulator of self-renewal and multi-lineage differentiation. Deregulated c-Myb plays critical roles in leukaemias and other human cancers. Due to its role as a master regulator, we hypothesized it might function as a pioneer transcription factor. Our approach to test this was to analyse a mutant of c-Myb, D152V, previously reported to cause haematopoietic defects in mice by an unknown mechanism. Our transcriptome data from K562 cells indicates that this mutation specifically affects c-Myb's ability to regulate genes involved in differentiation, causing failure in c-Myb's ability to block differentiation. Furthermore, we see a major effect of this mutation in assays where chromatin opening is involved. We show that each repeat in the minimal DNA-binding domain of c-Myb binds to histones and that D152V disrupts histone binding of the third repeat. ATAC-seq data indicates this mutation impairs the ability of c-Myb to cause chromatin opening at specific sites. Taken together, our findings support that c-Myb acts as a pioneer factor and show that D152V impairs this function. The D152V mutant is the first mutant of a transcription factor specifically destroying pioneer factor function.


Assuntos
Diferenciação Celular/genética , Genes myb , Histonas/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Substituição de Aminoácidos , Animais , Cromatina/genética , Cromatina/metabolismo , Eritropoese/genética , Técnicas de Silenciamento de Genes , Humanos , Células K562 , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myb/química
8.
Brief Bioinform ; 17(6): 980-995, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26586731

RESUMO

Enhancer-promoter regulation is a fundamental mechanism underlying differential transcriptional regulation. Spatial chromatin organization brings remote enhancers in contact with target promoters in cis to regulate gene expression. There is considerable evidence for promoter-enhancer interactions (PEIs). In the recent years, genome-wide analyses have identified signatures and mapped novel enhancers; however, being able to precisely identify their target gene(s) requires massive biological and bioinformatics efforts. In this review, we give a short overview of the chromatin landscape and transcriptional regulation. We discuss some key concepts and problems related to chromatin interaction detection technologies, and emerging knowledge from genome-wide chromatin interaction data sets. Then, we critically review different types of bioinformatics analysis methods and tools related to representation and visualization of PEI data, raw data processing and PEI prediction. Lastly, we provide specific examples of how PEIs have been used to elucidate a functional role of non-coding single-nucleotide polymorphisms. The topic is at the forefront of epigenetic research, and by highlighting some future bioinformatics challenges in the field, this review provides a comprehensive background for future PEI studies.


Assuntos
Regiões Promotoras Genéticas , Cromatina , Biologia Computacional , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla
9.
Mol Cell ; 38(3): 452-64, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20471950

RESUMO

How polycomb group proteins repress gene expression in vivo is not known. While histone-modifying activities of the polycomb repressive complexes (PRCs) have been studied extensively, in vitro data have suggested a direct activity of the PRC1 complex in compacting chromatin. Here, we investigate higher-order chromatin compaction of polycomb targets in vivo. We show that PRCs are required to maintain a compact chromatin state at Hox loci in embryonic stem cells (ESCs). There is specific decompaction in the absence of PRC2 or PRC1. This is due to a PRC1-like complex, since decompaction occurs in Ring1B null cells that still have PRC2-mediated H3K27 methylation. Moreover, we show that the ability of Ring1B to restore a compact chromatin state and to repress Hox gene expression is not dependent on its histone ubiquitination activity. We suggest that Ring1B-mediated chromatin compaction acts to directly limit transcription in vivo.


Assuntos
Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Acetilação , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metilação , Camundongos , Mutação , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases , Ubiquitinação
10.
Biochim Biophys Acta ; 1859(5): 705-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27032383

RESUMO

The PIAS proteins (Protein Inhibitor of Activated STATs) constitute a family of multifunctional nuclear proteins operating as SUMO E3 ligases and being involved in a multitude of interactions. They participate in a range of biological processes, also beyond their well-established role in the immune system and cytokine signalling. They act both as transcriptional corepressors and coactivators depending on the context. In the present work, we investigated mechanisms by which PIAS1 causes activation or repression of c-Myb dependent target genes. Analysis of global expression data shows that c-Myb and PIAS1 knockdowns affect a subset of common targets, but with a dual outcome consistent with a role of PIAS1 as either a corepressor or coactivator. Our mechanistic studies show that PIAS1 engages in a novel interaction with the acetyltransferase and coactivator p300. Interaction and ChIP analysis suggest a bridging function where PIAS1 enhances p300 recruitment to c-Myb-bound sites through interaction with both proteins. In addition, the E3 activity of PIAS1 enhances further its coactivation. Remarkably, the SUMO status of c-Myb had a decisive role, indicating a SUMO-dependent switch in the way PIAS1 affects c-Myb, either as a coactivator or corepressor. Removal of the two major SUMO-conjugation sites in c-Myb (2KR mutant), which enhances its activity significantly, turned PIAS1 into a corepressor. Also, p300 was less efficiently recruited to chromatin by c-Myb-2KR. We propose that PIAS1 acts as a "protein inhibitor of activated c-Myb" in the absence of SUMOylation while, in its presence, PIAS behaves as a "protein activator of repressed c-Myb".


Assuntos
Proteínas Inibidoras de STAT Ativados/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição de p300-CBP/genética , Cromatina/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligação Proteica/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myb/biossíntese , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Fatores de Transcrição de p300-CBP/metabolismo
11.
Genome Res ; 23(10): 1580-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861385

RESUMO

The nuclear lamina is implicated in the organization of the eukaryotic nucleus. Association of nuclear lamins with the genome occurs through large chromatin domains including mostly, but not exclusively, repressed genes. How lamin interactions with regulatory elements modulate gene expression in different cellular contexts is unknown. We show here that in human adipose tissue stem cells, lamin A/C interacts with distinct spatially restricted subpromoter regions, both within and outside peripheral and intra-nuclear lamin-rich domains. These localized interactions are associated with distinct transcriptional outcomes in a manner dependent on local chromatin modifications. Down-regulation of lamin A/C leads to dissociation of lamin A/C from promoters and remodels repressive and permissive histone modifications by enhancing transcriptional permissiveness, but is not sufficient to elicit gene activation. Adipogenic differentiation resets a large number of lamin-genome associations globally and at subpromoter levels and redefines associated transcription outputs. We propose that lamin A/C acts as a modulator of local gene expression outcome through interaction with adjustable sites on promoters, and that these position-dependent transcriptional readouts may be reset upon differentiation.


Assuntos
Tecido Adiposo/citologia , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Transcrição Gênica , Adipogenia , Tecido Adiposo/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Loci Gênicos , Humanos , Lamina Tipo A/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Células-Tronco/citologia , Ativação Transcricional
12.
Genome Res ; 23(12): 2053-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990607

RESUMO

Compared with histone H3, acetylation of H4 tails has not been well studied, especially in mammalian cells. Yet, H4K16 acetylation is of particular interest because of its ability to decompact nucleosomes in vitro and its involvement in dosage compensation in flies. Here we show that, surprisingly, loss of H4K16 acetylation does not alter higher-order chromatin compaction in vivo in mouse embryonic stem cells (ESCs). As well as peaks of acetylated H4K16 and KAT8 histone acetyltransferase at the transcription start sites of expressed genes, we report that acetylation of H4K16 is a new marker of active enhancers in ESCs and that some enhancers are marked by H3K4me1, KAT8, and H4K16ac, but not by acetylated H3K27 or EP300, suggesting that they are novel EP300 independent regulatory elements. Our data suggest a broad role for different histone acetylation marks and for different histone acetyltransferases in long-range gene regulation.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Células Cultivadas , Mecanismo Genético de Compensação de Dose , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/genética , Hibridização in Situ Fluorescente , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Sítio de Iniciação de Transcrição
13.
Development ; 139(17): 3157-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872084

RESUMO

A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).


Assuntos
Padronização Corporal/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Camundongos , Microscopia de Fluorescência , Proteínas do Grupo Polycomb , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(23): 9077-82, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22603795

RESUMO

Barrett esophagus (BE) is a human metaplastic condition that is the only known precursor to esophageal adenocarcinoma. BE is characterized by a posterior intestinal-like phenotype in an anterior organ and therefore it is reminiscent of homeotic transformations, which can occur in transgenic animal models during embryonic development as a consequence of mutations in HOX genes. In humans, acquired deregulation of HOX genes during adulthood has been linked to carcinogenesis; however, little is known about their role in the pathogenesis of premalignant conditions. We hypothesized that HOX genes may be implicated in the development of BE. We demonstrated that three midcluster HOXB genes (HOXB5, HOXB6, and HOXB7) are overexpressed in BE, compared with the anatomically adjacent normal esophagus and gastric cardia. The midcluster HOXB gene signature in BE is identical to that seen in normal colonic epithelium. Ectopic expression of these three genes in normal squamous esophageal cells in vitro induces markers of intestinal differentiation, such as KRT20, MUC2, and VILLIN. In BE-associated adenocarcinoma, the activation midcluster HOXB gene is associated with loss of H3K27me3 and gain of AcH3, compared with normal esophagus. These changes in histone posttranslational modifications correlate with specific chromatin decompaction at the HOXB locus. We suggest that epigenetically regulated alterations of HOX gene expression can trigger changes in the transcriptional program of adult esophageal cells, with implications for the early stages of carcinogenesis.


Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Epigênese Genética/genética , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox/genética , Adenocarcinoma/etiologia , Adenocarcinoma/genética , Adulto , Esôfago de Barrett/complicações , Esôfago de Barrett/genética , Western Blotting , Imunoprecipitação da Cromatina , Colo/citologia , Colo/metabolismo , Primers do DNA/genética , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/genética , Esôfago/citologia , Esôfago/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização in Situ Fluorescente , Análise em Microsséries , Reação em Cadeia da Polimerase
15.
PLoS Genet ; 8(7): e1002774, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844243

RESUMO

Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation.


Assuntos
Histonas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
16.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162841

RESUMO

Background: Imaging of in vitro neuronal differentiation and measurements of cell morphologies has led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images has increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. Results: We present ANDA, an analysis workflow for quantification of various aspects of neuronal morphology from high-throughput live-cell imaging screens. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used rat, chicken and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. Conclusions: ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.

17.
iScience ; 26(10): 107755, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731623

RESUMO

Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.

18.
PLoS Genet ; 5(12): e1000769, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011120

RESUMO

The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling.


Assuntos
DNA Helicases/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/química , Primers do DNA , Humanos , Proteínas Nucleares/química , Reação em Cadeia da Polimerase , Conformação Proteica , Interferência de RNA , Fatores de Transcrição/química
19.
STAR Protoc ; 3(3): 101533, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123835

RESUMO

Here, we describe a protocol for rapid neuronal differentiation from human embryonic stem cells (hESCs) toward a heterogenous population of telencephalic progenitors, immature and mature neurons, for drug-screening and early-brain differentiation studies. hESC neuronal differentiation depends on adhesion and minimal cell-passaging to avert monolayer cross-connectivity rupture. In this protocol, we detail optimized cell-seeding densities and coating conditions with high cell viability suitable for neurotoxicology and high-resolution single-cell omics studies. Daily media changes reduce compound instability and degradation for optimal screening. For complete details on the use and execution of this protocol, please refer to Samara et al. (2022).


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular/fisiologia , Sobrevivência Celular , Células-Tronco Embrionárias , Humanos , Neurônios
20.
Epigenetics Chromatin ; 15(1): 13, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440061

RESUMO

Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesised that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer types. We performed emQTL (expression-methylation quantitative trait loci) analyses independently in each cancer type and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding sites in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumor-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 both in an in vitro setup and in vivo at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer cells.


Assuntos
Metilação de DNA , Neoplasias , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA/metabolismo , Genoma , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Oxigenases de Função Mista/metabolismo , Neoplasias/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA