Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Natl Compr Canc Netw ; 21(9): 894-899, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673116

RESUMO

Immune checkpoint inhibitors (ICIs) induce profound benefits in cancer patients with mismatch repair gene mutations or high levels of microsatellite instability. Herein, we present a case of a patient with history of Muir-Torre/Lynch syndrome and metastatic gastric adenocarcinoma in the presence of an MSH2 gene mutation. The patient was initially treated with a PD-1 inhibitor, pembrolizumab, but developed grade 4 myocarditis requiring treatment with infliximab and a prolonged steroid taper. Following discontinuation of pembrolizumab, surveillance testing showed no radiographic or endoscopic evidence of progression for 7 months, until biopsy results from a repeat upper endoscopy indicated local disease recurrence. The patient was subsequently rechallenged with another PD-1 inhibitor, nivolumab, at a 50% dose reduction without recurrent adverse events and eventually achieved a complete response after 13 cycles. This case highlights the relative importance of considering careful rechallenge with ICI therapy in patients with microsatellite instability-high malignancies and a high risk of severe adverse events.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Miocardite , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Instabilidade de Microssatélites , Miocardite/tratamento farmacológico , Miocardite/etiologia , Nivolumabe/efeitos adversos
2.
Gut ; 67(3): 508-520, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073890

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. DESIGN: 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. RESULTS: The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. CONCLUSIONS: These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient.


Assuntos
Carcinoma Ductal Pancreático/genética , DNA de Neoplasias/análise , Neoplasias Pancreáticas/genética , RNA Neoplásico/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de RNA , Proteína Smad4/genética , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
3.
Therap Adv Gastroenterol ; 15: 17562848221115317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967919

RESUMO

Biliary tract cancers are a diverse and aggressive malignancy that carry a poor chance for curative treatment and significant associated mortality. Current first-line treatment only extends median overall survival to roughly 1 year and is associated with a significant adverse event profile. Recently, advancements in genetic sequencing have opened new avenues of targeted treatment. In cholangiocarcinoma, FGFR2 alterations have been shown to be present in roughly 10-15% of intrahepatic cholangiocarcinoma. Pemigatinib, a FGFR1-4 inhibitor, has been shown to significantly extend survival in the second-line setting to over 20 months in patients who harbor FGFR2 fusions. Here, we outline the development and future direction of pemigatinib and other FGFR2 inhibitors in the field of advanced biliary tract cancers.

4.
Cancer Res ; 82(18): 3345-3358, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947641

RESUMO

A subset of cancers across multiple histologies with predominantly poor outcomes use the alternative lengthening of telomeres (ALT) mechanism to maintain telomere length, which can be identified with robust biomarkers. ALT has been reported to be prevalent in high-risk neuroblastoma and certain sarcomas, and ALT cancers are a major clinical challenge that lack targeted therapeutic approaches. Here, we found ALT in a variety of pediatric and adult cancer histologies, including carcinomas. Patient-derived ALT cancer cell lines from neuroblastomas, sarcomas, and carcinomas were hypersensitive to the p53 reactivator eprenetapopt (APR-246) relative to telomerase-positive (TA+) models. Constitutive telomere damage signaling in ALT cells activated ataxia-telangiectasia mutated (ATM) kinase to phosphorylate p53, which resulted in selective ALT sensitivity to APR-246. Treatment with APR-246 combined with irinotecan achieved complete responses in mice xenografted with ALT neuroblastoma, rhabdomyosarcoma, and breast cancer and delayed tumor growth in ALT colon cancer xenografts, while the combination had limited efficacy in TA+ tumor models. A large number of adult and pediatric cancers present with the ALT phenotype, which confers a uniquely high sensitivity to reactivation of p53. These data support clinical evaluation of a combinatorial approach using APR-246 and irinotecan in ALT patients with cancer. SIGNIFICANCE: This work demonstrates that constitutive activation of ATM in chemotherapy-refractory ALT cancer cells renders them hypersensitive to reactivation of p53 function by APR-246, indicating a potential strategy to overcome therapeutic resistance.


Assuntos
Carcinoma , Neuroblastoma , Sarcoma , Telomerase , Animais , Humanos , Irinotecano , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Sarcoma/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408079

RESUMO

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Assuntos
Ataxia Telangiectasia , Neuroblastoma , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Piridinas , Quinolinas , Telômero , Homeostase do Telômero
6.
Cell Rep ; 16(7): 2017-31, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498862

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) harbors the worst prognosis of any common solid tumor, and multiple failed clinical trials indicate therapeutic recalcitrance. Here, we use exome sequencing of patient tumors and find multiple conserved genetic alterations. However, the majority of tumors exhibit no clearly defined therapeutic target. High-throughput drug screens using patient-derived cell lines found rare examples of sensitivity to monotherapy, with most models requiring combination therapy. Using PDX models, we confirmed the effectiveness and selectivity of the identified treatment responses. Out of more than 500 single and combination drug regimens tested, no single treatment was effective for the majority of PDAC tumors, and each case had unique sensitivity profiles that could not be predicted using genetic analyses. These data indicate a shortcoming of reliance on genetic analysis to predict efficacy of currently available agents against PDAC and suggest that sensitivity profiling of patient-derived models could inform personalized therapy design for PDAC.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Exoma , Modelos Estatísticos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Docetaxel , Everolimo/farmacologia , Humanos , Camundongos , Modelos Genéticos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Medicina de Precisão , Prognóstico , Piridonas/farmacologia , Pirimidinonas/farmacologia , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA