Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(19): 7283-7291, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33955213

RESUMO

The goal of this work was to develop recombinantly expressed variable domains derived from camelid heavy-chain antibodies known as single-domain antibodies (sdAbs) directed against the SARS-CoV-2 nucleocapsid protein for incorporation into detection assays. To achieve this, a llama was immunized using a recombinant SARS-CoV-2 nucleocapsid protein and an immune phage-display library of variable domains was developed. The sdAbs selected from this library segregated into five distinct sequence families. Three of these families bind to unique epitopes with high affinity, low nM to sub-nM KD, as determined by surface plasmon resonance. To further enhance the utility of these sdAbs for the detection of nucleocapsid protein, homobivalent and heterobivalent genetic fusion constructs of the three high-affinity sdAbs were prepared. The effectiveness of the sdAbs for the detection of nucleocapsid protein was evaluated using MagPlex fluid array assays, a multiplexed immunoassay on color-coded magnetic microspheres. Using the optimal bivalent pair, one immobilized on the microsphere and the other serving as the biotinylated recognition reagent, a detection limit as low as 50 pg/mL of recombinant nucleocapsid and of killed virus down to 1.28 × 103 pfu/mL was achieved. The sdAbs described here represent immune reagents that can be tailored to be optimized for a number of detection platforms and may one day aid in the detection of SARS-CoV-2 to assist in controlling the current pandemic.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Humanos , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445399

RESUMO

Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under "basal" circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.


Assuntos
Camelídeos Americanos/imunologia , Rim/química , Fígado/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Anticorpos de Domínio Único/administração & dosagem , Administração Intravenosa , Animais , Química Encefálica , Feminino , Fluorometria , Humanos , Camundongos , Modelos Teóricos , Tamanho da Partícula , Anticorpos de Domínio Único/sangue , Anticorpos de Domínio Único/química
3.
Brain ; 138(Pt 8): 2263-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084657

RESUMO

Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-ß proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.


Assuntos
Axônios/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Microdiálise , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Ann Neurol ; 73(1): 104-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23225543

RESUMO

OBJECTIVE: Although amyloid-beta (Aß) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer disease; soluble oligomeric Aß has been hypothesized to more directly underlie impaired learning and memory in dementia of the Alzheimer type. However, the lack of a sensitive, specific, and quantitative assay for Aß oligomers has hampered rigorous tests of this hypothesis. METHODS: We developed a plate-based single molecule counting fluorescence immunoassay for oligomeric Aß sensitive to low pg/ml concentrations of synthetic Aß dimers using the same Aß-specific monoclonal antibody to both capture and detect Aß. The Aß oligomer assay does not recognize monomeric Aß, amyloid precursor protein, or other non-Aß peptide oligomers. RESULTS: Aß oligomers were detected in aqueous cortical lysates from patients with dementia of the Alzheimer type and nondemented patients with Aß plaque pathology. However, Aß oligomer concentrations in demented patients' lysates were tightly correlated with Aß plaque coverage (r = 0.88), but this relationship was weaker in those from nondemented patients (r = 0.30) despite equivalent Aß plaque pathology. The ratio of Aß oligomer levels to plaque density fully distinguished demented from nondemented patients, with no overlap between groups in this derived variable. Other Aß and plaque measures did not distinguish demented from nondemented patients. Aß oligomers were not detected in cerebrospinal fluid with this assay. INTERPRETATION: The results raise the intriguing hypothesis that the linkage between plaques and oligomers may be a key pathophysiological event underlying dementia of the Alzheimer type. This Aß oligomer assay may be useful for many tests of the oligomer hypothesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Córtex Cerebral/química , Feminino , Humanos , Masculino , Multimerização Proteica/fisiologia
5.
Brain ; 135(Pt 4): 1268-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22116192

RESUMO

Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-ß levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-ß release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lesões Encefálicas/patologia , Encéfalo/patologia , Espaço Extracelular/metabolismo , Proteínas tau/metabolismo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Ensaio de Imunoadsorção Enzimática , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Microdiálise/métodos , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/metabolismo , Valor Preditivo dos Testes , Estatística como Assunto , Estatísticas não Paramétricas , Tomografia Computadorizada por Raios X , Adulto Jovem
6.
Fluids Barriers CNS ; 20(1): 64, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620930

RESUMO

BACKGROUND: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. METHODS: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. RESULTS: The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30-60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. CONCLUSION: The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.


Assuntos
Barreira Hematoencefálica , Hipotermia , Animais , Camundongos , Histidina , Neurotensina , Transcitose , Concentração de Íons de Hidrogênio
7.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37333358

RESUMO

Background: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. Methods: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1 R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. Results: The most effective histidine mutant, M1 R56H, P96H, Y102H -neurotensin, caused >8°C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1 56,96,102His -13A7-13A7 in capillary depleted brain lysates peaked at 1 hour and were 60% retained at 8 hours. A control construct with no brain targets was only 15% retained at 8 hours. Addition of the albumin-binding Nb80 nanobody to make M1 R56H, P96H, Y102H -13A7-13A7-Nb80 extended blood half-life from 21 minutes to 2.6 hours. At 30-60 minutes, biotinylated M1 R56H, P96H, Y102H -13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 hours it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1 R56H, P96H, Y102H -13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. Conclusion: The pH-sensitive mouse transferrin receptor binding nanobody M1 R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.

8.
Nat Commun ; 14(1): 3692, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429842

RESUMO

Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Aerossóis e Gotículas Respiratórios , Monitoramento Ambiental
9.
ACS Sens ; 8(8): 3023-3031, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37498298

RESUMO

Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Aerossóis e Gotículas Respiratórios , Expiração
10.
PLoS One ; 17(10): e0276107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36256604

RESUMO

The blood-brain barrier (BBB) presents a major obstacle in developing specific diagnostic imaging agents for many neurological disorders. In this study we aimed to generate single domain anti-mouse transferrin receptor antibodies (anti-mTfR VHHs) to mediate BBB transcytosis as components of novel MRI molecular contrast imaging agents. Anti-mTfR VHHs were produced by immunizing a llama with mTfR, generation of a VHH phage display library, immunopanning, and in vitro characterization of candidates. Site directed mutagenesis was used to generate additional variants. VHH fusions with neurotensin (NT) allowed rapid, hypothermia-based screening for VHH-mediated BBB transcytosis in wild-type mice. One anti-mTfR VHH variant was fused with an anti-amyloid-beta (Aß) VHH dimer and labeled with fluorescent dye for direct assessment of in vivo target engagement in a mouse model of AD-related Aß plaque pathology. An anti-mTfR VHH called M1 and variants had binding affinities to mTfR of <1nM to 1.52nM. The affinity of the VHH binding to mTfR correlated with the efficiency of the VHH-NT induced hypothermia effects after intravenous injection of 600 nmol/kg body weight, ranging from undetectable for nonbinding mutants to -6°C for the best mutants. The anti-mTfR VHH variant M1P96H with the strongest hypothermia effect was fused to the anti-Aß VHH dimer and labeled with Alexa647; the dye-labeled VHH fusion construct still bound both mTfR and Aß plaques at concentrations as low as 0.22 nM. However, after intravenous injection at 600 nmol/kg body weight into APP/PS1 transgenic mice, there was no detectible labeling of plaques above control levels. Thus, NT-induced hypothermia did not correlate with direct target engagement in cortex, likely because the concentration required for NT-induced hypothermia was lower than the concentration required to produce in situ labeling. These findings reveal an important dissociation between NT-induced hypothermia, presumably mediated by hypothalamus, and direct engagement with Aß-plaques in cortex. Additional methods to assess anti-mTfR VHH BBB transcytosis will need to be developed for anti-mTfR VHH screening and the development of novel MRI molecular contrast agents.


Assuntos
Doença de Alzheimer , Camelídeos Americanos , Hipotermia , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Neurotensina/metabolismo , Doença de Alzheimer/metabolismo , Meios de Contraste/metabolismo , Hipotermia/metabolismo , Corantes Fluorescentes/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Transcitose , Peso Corporal
11.
MAbs ; 14(1): 2047144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289719

RESUMO

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Anticorpos de Domínio Único/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , Anticorpos Amplamente Neutralizantes/imunologia , Cricetinae , Modelos Animais de Doenças , Humanos , Mesocricetus , Nebulizadores e Vaporizadores , Ligação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
12.
PLoS One ; 16(11): e0259335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34748596

RESUMO

Alzheimer's disease (AD) is tightly correlated with synapse loss in vulnerable brain regions. It is assumed that specific molecular entities such as Aß and tau cause synapse loss in AD, yet unbiased screens for synaptotoxic activities have not been performed. Here, we performed size exclusion chromatography on soluble human brain homogenates from AD cases, high pathology non-demented controls, and low pathology age-matched controls using our novel high content primary cultured neuron-based screening assay. Both presynaptic and postsynaptic toxicities were elevated in homogenates from AD cases and high pathology non-demented controls to a similar extent, with more modest synaptotoxic activities in homogenates from low pathology normal controls. Surprisingly, synaptotoxic activities were found in size fractions peaking between the 17-44 kDa size standards that did not match well with Aß and tau immunoreactive species in these homogenates. The fractions containing previously identified high molecular weight soluble amyloid beta aggregates/"oligomers" were non-toxic in this assay. Furthermore, immunodepletion of Aß and tau did not reduce synaptotoxic activity. This result contrasts with previous findings involving the same methods applied to 3xTg-AD mouse brain extracts. The nature of the synaptotoxic species has not been identified. Overall, our data indicates one or more potential Aß and tau independent synaptotoxic activities in human AD brain homogenates. This result aligns well with the key role of synaptic loss in the early cognitive decline and may provide new insight into AD pathophysiology.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios/patologia , Sinapses/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Cultura Primária de Células , Sinapses/metabolismo , Proteínas tau/metabolismo
13.
bioRxiv ; 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34790977

RESUMO

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses, including the currently dominant Delta variant. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.

14.
Sci Rep ; 11(1): 106, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420210

RESUMO

Magnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared-RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test-retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents.


Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Sensibilidade e Especificidade
15.
Neurobiol Dis ; 40(3): 555-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20682338

RESUMO

Acute amyloid-ß peptide (Aß) deposition has been observed in young traumatic brain injury (TBI) patients, leading to the hypothesis that elevated extracellular Aß levels could underlie the increased risk of dementia following TBI. However, a recent microdialysis-based study in human brain injury patients found that extracellular Aß dynamics correlate with changes in neurological status. Because neurological status is generally diminished following injury, this correlation suggested the alternative hypothesis that soluble extracellular Aß levels may instead be reduced after TBI relative to baseline. We have developed a methodologically novel mouse model that combines experimental controlled cortical impact TBI with intracerebral microdialysis. In this model, we found that Aß levels in microdialysates were immediately decreased by 25-50% in the ipsilateral hippocampus following TBI. This result was found in PDAPP, Tg2576, and Tg2576-ApoE2 transgenic mice producing human Aß plus wild-type animals. Changes were not due to altered probe function, edema, changes in APP levels, or Aß deposition. Similar decreases in Aß were observed in phosphate buffered saline-soluble tissue extracts. Hippocampal electroencephalographic activity was also decreased up to 40% following TBI, and correlated with reduced microdialysate Aß levels. These results support the alternative hypothesis that post-injury extracellular soluble Aß levels are acutely decreased relative to baseline. Reduced neuronal activity may contribute, though the underlying mechanisms have not been definitively determined. Further work will be needed to assess the dynamics of insoluble and oligomeric Aß after TBI.


Assuntos
Peptídeos beta-Amiloides/análise , Lesões Encefálicas/metabolismo , Líquido Extracelular/química , Peptídeos beta-Amiloides/metabolismo , Animais , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Eletroencefalografia , Líquido Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise
16.
Sci Rep ; 10(1): 22370, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353972

RESUMO

There are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12-15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1-5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , COVID-19/metabolismo , Descoberta de Drogas/métodos , Domínios e Motivos de Interação entre Proteínas/imunologia , SARS-CoV-2/química , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos/imunologia , COVID-19/terapia , COVID-19/virologia , Camelídeos Americanos , Células HEK293 , Humanos , Imunização/métodos , Masculino , Ligação Proteica , Transdução de Sinais/genética , Glicoproteína da Espícula de Coronavírus/genética , Transdução Genética , Transfecção
17.
Sci Rep ; 10(1): 3412, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098978

RESUMO

Accurate quantification of synaptic changes is essential for understanding the molecular mechanisms of synaptogenesis, synaptic plasticity, and synaptic toxicity. Here we demonstrate a robust high-content imaging method for the assessment of synaptic changes and apply the method to brain homogenates from an Alzheimer's disease mouse model. Our method uses serial imaging of endogenous fluorescent labeled presynaptic VAMP2 and postsynaptic PSD95 in long-term cultured live primary neurons in 96 well microplates, and uses automatic image analysis to quantify the number of colocalized mature synaptic puncta for the assessment of synaptic changes in live neurons. As a control, we demonstrated that our synaptic puncta assay is at least 10-fold more sensitive to the toxic effects of glutamate than the MTT assay. Using our assay, we have compared synaptotoxic activities in size-exclusion chromatography fractioned protein samples from 3xTg-AD mouse model brain homogenates. Multiple synaptotoxic activities were found in high and low molecular weight fractions. Amyloid-beta immunodepletion alleviated some but not all of the synaptotoxic activities. Although the biochemical entities responsible for the synaptotoxic activities have yet to be determined, these proof-of-concept results demonstrate that this novel assay may have many potential mechanistic and therapeutic applications.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/genética , Camundongos , Camundongos Knockout , Neurônios/patologia , Proteína 2 Associada à Membrana da Vesícula/genética
18.
J Neurotrauma ; 36(5): 735-755, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136628

RESUMO

Due to the unmet need for a means to study chronic traumatic encephalopathy (CTE) in vivo, there have been numerous efforts to develop an animal model of this progressive tauopathy. However, there is currently no consensus in the field on an injury model that consistently reproduces the neuropathological and behavioral features of CTE. We have implemented a repetitive Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) injury paradigm in human transgenic (hTau) mice. Animals were subjected to daily subconcussive or concussive injuries for 20 days and tested acutely, 3 months, and 12 months post-injury for deficits in social behavior, anxiety, spatial learning and memory, and depressive behavior. Animals also were assessed for chronic tau pathology, astrogliosis, and white matter degeneration. Repetitive concussive injury caused acute deficits in Morris water maze performance, including reduced swimming speed and increased distance to the platform during visible and hidden platform phases that persisted during the subacute and chronic time-points following injury. We found evidence of white matter disruption in animals injured with subconcussive and concussive injuries, with the most severe disruption occurring in the repetitive concussive injury group. Severity of white matter disruption in the corpus callosum was moderately correlated with swimming speed, while white matter disruption in the fimbria showed weak but significant correlation with worse performance during probe trial. There was no evidence of tau pathology or astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as 1 year post-injury that may be related to chronic white matter disruption, although the relationship with CTE remains to be determined.


Assuntos
Encefalopatia Traumática Crônica/complicações , Encefalopatia Traumática Crônica/patologia , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Substância Branca/patologia , Proteínas tau , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Neurology ; 93(17): e1605-e1617, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31578300

RESUMO

OBJECTIVE: To define the natural history of the C9orf72 amyotrophic lateral sclerosis (C9ALS) patient population, develop disease biomarkers, and characterize patient pathologies. METHODS: We prospectively collected clinical and demographic data from 116 symptomatic C9ALS and 12 non-amyotrophic lateral sclerosis (ALS) full expansion carriers across 7 institutions in the United States and the Netherlands. In addition, we collected blood samples for DNA repeat size assessment, CSF samples for biomarker identification, and autopsy samples for dipeptide repeat protein (DPR) size determination. Finally, we collected retrospective clinical data via chart review from 208 individuals with C9ALS and 450 individuals with singleton ALS. RESULTS: The mean age at onset in the symptomatic prospective cohort was 57.9 ± 8.3 years, and median duration of survival after onset was 36.9 months. The monthly change was -1.8 ± 1.7 for ALS Functional Rating Scale-Revised and -1.4% ± 3.24% of predicted for slow vital capacity. In blood DNA, we found that G4C2 repeat size correlates positively with age. In CSF, we observed that concentrations of poly(GP) negatively correlate with DNA expansion size but do not correlate with measures of disease progression. Finally, we found that size of poly(GP) dipeptides in the brain can reach large sizes similar to that of their DNA repeat derivatives. CONCLUSIONS: We present a thorough investigation of C9ALS natural history, providing the basis for C9ALS clinical trial design. We found that clinical features of this genetic subset are less variant than in singleton ALS. In addition, we identified important correlations of C9ALS patient pathologies with clinical and demographic data.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Idade de Início , Esclerose Lateral Amiotrófica/epidemiologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Expansão das Repetições de DNA , Feminino , Seguimentos , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
20.
PLoS One ; 13(7): e0200251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979775

RESUMO

An unanswered question regarding Alzheimer disease dementia (ADD) is whether amyloid-beta (Aß) plaques sequester toxic soluble Aß species early during pathological progression. We previously reported that the concentration of soluble Aß aggregates from patients with mild dementia was higher than soluble Aß aggregates from patients with modest Aß plaque burden but no dementia. The ratio of soluble Aß aggregate concentration to Aß plaque area fully distinguished these groups of patients. We hypothesized that initially plaques may serve as a reservoir or sink for toxic soluble Aß aggregates, sequestering them from other targets in the extracellular space and thereby preventing their toxicity. To initially test a generalized version of this hypothesis, we have performed binding assessments using biotinylated synthetic Aß1-42 peptide. Aß1-42-biotin peptide was incubated on unfixed frozen sections from non-demented high plaque pathology controls and patients with ADD. The bound peptide was measured using ELISA and confocal microscopy. We observed no quantitative difference in Aß binding between the groups using either method. Further testing of the buffering hypothesis using various forms of synthetic and human derived soluble Aß aggregates will be required to definitively address the role of plaque buffering as it relates to ADD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Lobo Frontal/patologia , Placa Amiloide/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Progressão da Doença , Feminino , Lobo Frontal/metabolismo , Humanos , Masculino , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA