Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 10(1): 66-72, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23894065

RESUMO

Resistivity and resistance measurements have been carried out for thin films of cryptomelane-type manganese oxide (OMS-2) grown onto (001), (110), and (111)STO single crystals substrates via pulsed laser deposition. While the symmetries of the (001) and (111)STO substrate surfaces give deposits consisting of multiple nanofiber arrays with isotropic in-plane resistivities, only a single nanofiber array is formed on (110)STO giving highly anisotropic electrical properties with very low resistivity values measured parallel to the fibers and similar to the lowest value ever reported.

2.
J Am Chem Soc ; 134(18): 7944-51, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22482879

RESUMO

The development of sorbents for next-generation CO(2) mitigation technologies will require better understanding of CO(2)/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO(2) sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO(2) sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a "gate-keeping" role of the cation in the tunnel, only allowing CO(2) molecules to enter fully into the tunnel via a highly unstable transient state when CO(2) loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO(2) is responsible for the observed hysteretic behavior.

3.
Nat Mater ; 9(1): 54-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19881497

RESUMO

Cryptomelane-type manganese oxide (OMS-2) has been widely used to explore the semiconducting and catalytic properties of molecular sieves with mixed-valent frameworks. Selective synthesis of patterned thin films of OMS-2 with hierarchical nanostructures and oriented crystals is challenging owing to difficulties in preserving the mixed valence, porosity and crystalline phase. Here, we report that pulsed-laser ablation of OMS-2 in an oxygen-rich medium produces a three-dimensional nanostructured array of parallel and inclined OMS-2 fibres on bare substrates of (001) single-crystal strontium titanate. Both parallel and inclined OMS-2 fibres elongate along the [001](OMS-2) direction. The parallel fibres interact strongly with the substrate and grow epitaxially along <110>(STO) with lattice misfits of less than 4%, whereas the inclined fibres are oriented with (301) parallel to the substrate surface. The spontaneous orientation of the crystalline OMS-2 domains over the STO surface opens up a new avenue in lattice-engineered synthesis of multilayer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA