RESUMO
G-protein-coupled receptors (GPCRs) represent a family of druggable targets when treating several diseases and continue to be a leading part of the drug discovery process. Trace amine-associated receptors (TAARs) are GPCRs involved in many physiological functions with TAAR1 having important roles within the central nervous system (CNS). By using homology modeling methods, the responsiveness of TAAR1 to endogenous and synthetic ligands has been explored. In addition, the discovery of different chemo-types as selective murine and/or human TAAR1 ligands has helped in the understanding of the species-specificity preferences. The availability of TAAR1-ligand complexes sheds light on how different ligands bind TAAR1. TAAR5 is considered an olfactory receptor but has specific involvement in some brain functions. In this case, the drug discovery effort has been limited. Here, we review the successful computational efforts developed in the search for novel TAAR1 and TAAR5 ligands. A specific focus on applying structure-based and/or ligand-based methods has been done. We also give a perspective of the experimental data available to guide the future drug design of new ligands, probing species-specificity preferences towards more selective ligands. Hints for applying repositioning approaches are also discussed.
Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Ligantes , Humanos , Animais , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Ligação ProteicaRESUMO
Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Assuntos
Receptores Odorantes , Animais , Camundongos , Receptores Acoplados a Proteínas G/química , Aminas , Sítios de Ligação , LigantesRESUMO
Worldwide, approximately 27 million people are affected by Alzheimer's disease (AD). AD pathophysiology is believed to be caused by the deposition of the ß-amyloid peptide (Aß). Aß can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aß seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aß-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aß infusion in Aß-treated mice. In vitro data showed that Aß 1-42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aß. Further studies are needed to better understand the interplay between TAAR1/Aß and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aß-induced cognitive impairments, such as AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Aminas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-AspartatoRESUMO
Trace amine-associated receptor 5 (TAAR5) is a G protein-coupled receptor that belongs to the TAARs family (TAAR1-TAAR9). TAAR5 is expressed in the olfactory epithelium and is responsible for sensing 3-methylamine (TMA). However, recent studies showed that TAAR5 is also expressed in the limbic brain regions and is involved in the regulation of emotional behaviour and adult neurogenesis, suggesting that TAAR5 antagonism may represent a novel therapeutic strategy for anxiety and depression. We used the AtomNet® model, the first deep learning neural network for structure-based drug discovery, to identify putative TAAR5 ligands and tested them in an in vitro BRET assay. We found two mTAAR5 antagonists with low to submicromolar activity that are able to inhibit the cAMP production induced by TMA. Moreover, these two compounds also inhibited the mTAAR5 downstream signalling, such as the phosphorylation of CREB and ERK. These two hits exhibit drug-like properties and could be used to further develop more potent TAAR5 ligands with putative anxiolytic and antidepressant activity.
Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Ligantes , Redes Neurais de Computação , Mucosa OlfatóriaRESUMO
Glial cell-derived neurotrophic factor (GDNF) has a potent action in promoting the survival of dopamine (DA) neurons. Several studies indicate that increasing GDNF levels may be beneficial for the treatment of Parkinson's disease (PD) by reducing neurodegeneration of DA neurons. Despite a plethora of preclinical studies showing GDNF efficacy in PD animal models, its application in humans remains questionable for its poor efficacy and side effects due to its uncontrolled, ectopic expression. Here we took advantage of SINEUPs, a new class of antisense long non-coding RNA, that promote translation of partially overlapping sense protein-coding mRNAs with no effects on their mRNA levels. By synthesizing a SINEUP targeting Gdnf mRNA, we were able to increase endogenous GDNF protein levels by about 2-fold. Adeno-associated virus (AAV)9-mediated delivery in the striatum of wild-type (WT) mice led to an increase of endogenous GDNF protein for at least 6 months and the potentiation of the DA system's functions while showing no side effects. Furthermore, SINEUP-GDNF was able to ameliorate motor deficits and neurodegeneration of DA neurons in a PD neurochemical mouse model. Our data indicate that SINEUP-GDNF could represent a new strategy to increase endogenous GDNF protein levels in a more physiological manner for therapeutic treatments of PD.
Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neurônios Motores/metabolismo , Doença de Parkinson/genética , Interferência de RNA , RNA não Traduzido/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Neurônios Motores/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , FenótipoRESUMO
Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.
Assuntos
Ataxia de Friedreich/genética , Regulação da Expressão Gênica , Proteínas de Ligação ao Ferro/genética , Modelos Biológicos , RNA não Traduzido/metabolismo , Aconitato Hidratase/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Linfócitos/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , FrataxinaRESUMO
Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Hipercinese/etiologia , Animais , Disfunção Cognitiva/metabolismo , Feminino , Técnicas de Inativação de Genes , Hipercinese/metabolismo , Masculino , Ratos , Ratos WistarRESUMO
Given the recent evidence indicating that amphetamine derivatives may also act as direct agonists of the G protein-coupled trace amine-associated receptor 1 (TAAR1), we hypothesized that TAAR1 could contribute to the reinforcing and addictive properties of amphetamines. Accordingly, the present study aimed to investigate the role of TAAR1 in the effects of psychostimulants by analyzing context-dependent sensitization and conditioned place preference (CPP) to d-amphetamine (AMPH) in TAAR1-KO mice. In context-dependent sensitization experiment, TAAR1-KO mice showed higher conditioned locomotor responses compared to wild-type mice. In the CPP test, TAAR1-KO animals were also more sensitive to priming-induced reinstatement of AMPH-induced conditioned place preference (CPP) than wild type mice. Importantly, saline-treated and AMPH-treated mice lacking TAAR1 demonstrated significant alterations in the total levels and phosphorylation of the critical subunit of NMDA glutamate receptors, GluN1, in the striatum, suggesting a role of TAAR1 in the modulation of frontostriatal glutamate transmission; this effect could underlie the observed alterations in conditioning processes. In conclusion, our data suggest that TAAR1 receptors play an inhibitory role with respect to conditioned responses to AMPH by modulating, at least in part, corticostriatal glutamate transmission.
Assuntos
Anfetamina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
G protein-coupled trace amine-associated receptor 1 (TAAR1) is expressed in several brain regions and modulates dopaminergic activity partially by affecting D2 dopamine receptor function. In vitro, the nonselective dopamine agonist apomorphine can activate mouse and rat TAAR1. The aim of the present study was to evaluate whether apomorphine activity at the rodent TAAR1 observed in in vitro studies contributes to its behavioral manifestation in mice. For this purpose, we compared the behavioral effects of a wide range of apomorphine doses in wild type (WT) and TAAR1 knockout (TAAR1-KO) mice. Apomorphine-induced locomotor responses (0.01-4.0 mg/kg) were tested in locomotor activity boxes, and stereotypic behavior at 5 mg/kg was tested by ethological methods. A gnawing test was used to analyze the effects of the highest dose of apomorphine (10 mg/kg). No statistically significant differences were observed between TAAR1-KO and WT mice following inhibitory pre-synaptic low doses of apomorphine. At higher doses (2.0-5.0 mg/kg), apomorphine-induced climbing behavior was significantly reduced in TAAR1 mutants relative to WT controls. Moreover, the lack of TAAR1 receptors decreased certain types of stereotypies (as reflected in by measures of the global stereotypy score, licking but not sniffing or gnawing) that were induced by high doses of apomorphine. These data indicate that apomorphine activity at TAAR1 contributes to some behavioral manifestations, particularly climbing, in rodents following high doses of this drug. The contribution of TAAR1 to apomorphine-induced climbing in rodents should be considered when apomorphine is used as a screening tool in the search for potential antipsychotics.
Assuntos
Apomorfina/farmacologia , Agonistas de Dopamina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzazepinas/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Oxazóis/farmacologia , Fenetilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Quimpirol/farmacologia , Ensaio Radioligante , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Fatores de TempoRESUMO
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
RESUMO
SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs.
RESUMO
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors present in mammals in the brain and several peripheral organs. Apart from its olfactory role, TAAR5 is expressed in the major limbic brain areas and regulates brain serotonin functions and emotional behaviours. However, most of its functions remain undiscovered. Given the role of serotonin and limbic regions in some aspects of cognition, we used a temporal decision-making task to unveil a possible role of TAAR5 in cognitive processes. We found that TAAR5 knock-out mice showed a generally better performance due to a reduced number of errors and displayed a greater rate of improvement at the task than WT littermates. However, task-related parameters, such as time accuracy and uncertainty have not changed significantly. Overall, we show that TAAR5 modulates specific domains of cognition, highlighting a new role in brain physiology.
Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Serotonina , Animais , Cognição , Mamíferos , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , OlfatoRESUMO
SINEUP is a new class of long non-coding RNAs (lncRNAs) which contain an inverted Short Interspersed Nuclear Element (SINE) B2 element (invSINEB2) necessary to specifically upregulate target gene translation. Originally identified in the mouse AS-Uchl1 (antisense Ubiquitin carboxyl-terminal esterase L1) locus, natural SINEUP molecules are oriented head to head to their sense protein coding, target gene (Uchl1, in this example). Peculiarly, SINEUP is able to augment, in a specific and controlled way, the expression of the target protein, with no alteration of target mRNA levels. SINEUP is characterized by a modular structure with the Binding Domain (BD) providing specificity to the target transcript and an effector domain (ED)-containing the invSINEB2 element-able to promote the loading to the heavy polysomes of the target mRNA. Since the understanding of its modular structure in the endogenous AS-Uchl1 ncRNA, synthetic SINEUP molecules have been developed by creating a specific BD for the gene of interest and placing it upstream the invSINEB2 ED. Synthetic SINEUP is thus a novel molecular tool that potentially may be used for any industrial or biomedical application to enhance protein production, also as possible therapeutic strategy in haploinsufficiency-driven disorders.Here, we describe a detailed protocol to (1) design a specific BD directed to a gene of interest and (2) assemble and clone it with the ED to obtain a functional SINEUP molecule. Then, we provide guidelines to efficiently deliver SINEUP into mammalian cells and evaluate its ability to effectively upregulate target protein translation.
Assuntos
Biossíntese de Proteínas , RNA Longo não Codificante , Animais , Camundongos , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Nucleotídeos Curtos e DispersosRESUMO
The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.
Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , CamundongosRESUMO
Parkinson's disease (PD) presents the selective loss of A9 dopaminergic (DA) neurons of Substantia Nigra pars compacta (SNpc) and the presence of intracellular aggregates called Lewy bodies. α-synuclein (α-syn) species truncated at the carboxy-terminal (C-terminal) accumulate in pathological inclusions and promote α-syn aggregation and toxicity. Haemoglobin (Hb) is the major oxygen carrier protein in erythrocytes. In addition, Hb is expressed in A9 DA neurons where it influences mitochondrial activity. Hb overexpression increases cells' vulnerability in a neurochemical model of PD in vitro and forms cytoplasmic and nucleolar aggregates upon short-term overexpression in mouse SNpc. In this study, α and ß-globin chains were co-expressed in DA cells of SNpc in vivo upon stereotaxic injections of an Adeno-Associated Virus isotype 9 (AAV9) and in DA iMN9D cells in vitro. Long-term Hb over-expression in SNpc induced the loss of about 50% of DA neurons, mild motor impairments, and deficits in recognition and spatial working memory. Hb triggered the formation of endogenous α-syn C-terminal truncated species. Similar α-syn fragments were found in vitro in DA iMN9D cells over-expressing α and ß- globins when treated with pre-formed α-syn fibrils. Our study positions Hb as a relevant player in PD pathogenesis for its ability to trigger DA cells' loss in vivo and the formation of C-terminal α-syn fragments.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Doença de Parkinson/metabolismo , Hemoglobinas/metabolismo , CogniçãoRESUMO
SINEUPs are a novel class of natural and synthetic non-coding antisense RNA molecules able to increase the translation of a target mRNA. They present a modular organization comprising an unstructured antisense target-specific domain, which sets the specificity of each individual SINEUP, and a structured effector domain, which is responsible for the translation enhancement. In order to design a fully functional in vitro transcribed SINEUP for therapeutics applications, SINEUP RNAs were synthesized in vitro with a variety of chemical modifications and screened for their activity on endogenous target mRNA upon transfection. Three combinations of modified ribonucleotides-2'O methyl-ATP (Am), N6 methyl-ATP (m6A), and pseudo-UTP (ψ)-conferred SINEUP activity to naked RNA. The best combination tested in this study was fully modified with m6A and ψ. Aside from functionality, this combination conferred improved stability upon transfection and higher thermal stability. Common structural determinants of activity were identified by circular dichroisms, defining a core functional structure that is achieved with different combinations of modifications.
RESUMO
The ability of dopamine receptors to interact with other receptor subtypes may provide mechanisms for modulating dopamine-related functions and behaviors. In particular, there is evidence suggesting that the trace amine-associated receptor 1 (TAAR1) affects the dopaminergic system by regulating the firing rate of dopaminergic neurons or by altering dopamine D2 receptor (D2R) responsiveness to ligands. TAAR1 is a Gα(s) protein-coupled receptor that is activated by biogenic amines, "trace amines," such as ß-phenylethylamine (ß-PEA) and tyramine that are normally found at low concentrations in the mammalian brain. In the present study, we investigated the biochemical mechanism of interaction between TAAR1 and D2R and the role this interaction plays in D2R-related signaling and behaviors. Using a bioluminescence resonance energy transfer biosensor for cAMP, we demonstrated that the D2R antagonists haloperidol, raclopride, and amisulpride were able to enhance selectively a TAAR1-mediated ß-PEA increase of cAMP. Moreover, TAAR1 and D2R were able to form heterodimers when coexpressed in human embryonic kidney 293 cells, and this direct interaction was disrupted in the presence of haloperidol. In addition, in mice lacking TAAR1, haloperidol-induced striatal c-Fos expression and catalepsy were significantly reduced. Taken together, these data suggest that TAAR1 and D2R have functional and physical interactions that could be critical for the modulation of the dopaminergic system by TAAR1 in vivo.
Assuntos
Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Dimerização , Imunofluorescência , Haloperidol/farmacologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Ligação ProteicaRESUMO
RNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to 'canonical' protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids. A single therapeutic RNA transcript can then be assembled combining domains with defined secondary structures and functions, and antisense sequences specific for the RNA/DNA target of interest. As the first representative molecules of this new pharmacology, we have identified SINEUPs, a new functional class of natural antisense lncRNAs that increase the translation of partially overlapping mRNAs. Their activity is based on the combination of two domains: an embedded mouse inverted SINEB2 element that enhances mRNA translation (effector domain) and an overlapping antisense region that provides specificity for the target sense transcript (binding domain). By genetic engineering, synthetic SINEUPs can potentially target any mRNA of interest increasing translation and therefore the endogenous level of the encoded protein. In this review, we describe the state-of-the-art knowledge of SINEUPs and discuss recent publications showing their potential application in diseases where a physiological increase of endogenous protein expression can be therapeutic.
Assuntos
Biossíntese de Proteínas , RNA Longo não Codificante , Animais , Camundongos , Proteínas/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Neboglamine is a functional modulator of the glycine site on the N-methyl-d-aspartate (NMDA) receptor. Dysfunction of this receptor has been associated with negative and cognitive symptoms in schizophrenia. Thus, we tested the hypothesis that neboglamine behaves as a potential antipsychotic. We compared the effects of neboglamine, D-serine, clozapine, and haloperidol on the expression of Fos-like immunoreactivity (FLI), a marker of neuronal activation, in rat forebrain. We also studied the effects of these agents on phencyclidine (PCP)-induced behaviour in rats, a model predictive of potential antipsychotic activity. Neboglamine, like haloperidol and clozapine, significantly increased the number of FLI-positive cells in the prefrontal cortex, nucleus accumbens, and lateral septal nucleus (3.2-, 4.8-, and 4.5-fold over control, respectively). Haloperidol dramatically increased FLI (390-fold over control) in the dorsolateral striatum, a brain region in which neboglamine and clozapine had no effect. The pattern of FLI induced by neboglamine closely matched that of d-serine, an endogenous agonist at the glycine site of NMDA receptors. Consistent with this finding, neboglamine restored NMDA-mediated neurotransmitter release in frontal cortex punches exposed to the NMDA antagonist PCP. In the behavioural model, all test compounds significantly inhibited PCP-induced hyperlocomotion. Unlike haloperidol and clozapine, neither neboglamine nor D-serine affected the basal levels of locomotor activity. Moreover, oral neboglamine dose-dependently inhibited both the hyperlocomotion and the frequency of rearing behaviour induced by PCP. These results, while confirming that the NMDA glycine site is a feasible target for activating the frontostriatal system, support the clinical evaluation of neboglamine as a treatment for schizophrenia.
Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ácidos Pentanoicos/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Alucinógenos/antagonistas & inibidores , Alucinógenos/farmacologia , Haloperidol/farmacologia , Imuno-Histoquímica , Masculino , Atividade Motora/efeitos dos fármacos , Fenciclidina/antagonistas & inibidores , Fenciclidina/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores de Glicina/efeitos dos fármacos , Serina/metabolismoRESUMO
Central dopamine plays a key role in sexual behavior. Recently, a Dopamine Transporter knockout (DAT KO) rat has been developed, which displays several behavioral dysfunctions that have been related to increased extracellular dopamine levels and altered dopamine turnover secondary to DAT gene silencing. This prompted us to characterize the sexual behavior of these DAT KO rats and their heterozygote (HET) and wild type (WT) counterparts in classical copulatory tests with a sexually receptive female rat and to verify if and how the acquisition of sexual experience changes along five copulatory tests in these rat lines. Extracellular dopamine and glutamic acid concentrations were also measured in the dialysate obtained by intracerebral microdialysis from the nucleus accumbens (Acb) shell of DAT KO, HET and WT rats, which underwent five copulatory tests, when put in the presence of an inaccessible sexually receptive female rat and when copulation was allowed. Markers of neurotropism (BDNF, trkB), neural activation (Δ-FosB), functional (Arc and PSA-NCAM) and structural synaptic plasticity (synaptophysin, syntaxin-3, PSD-95) were also measured in the ventral tegmental area (VTA), Acb (shell and core) and medial prefrontal cortex (mPFC) by Western Blot assays. The results indicate that the sexual behavior of DAT KO vs. HET and WT rats shows peculiar differences, mainly due to a more rapid acquisition of stable sexual activity levels and to higher levels of sexual motivation and activity. These differences occurred with differential changes in dopamine and glutamic acid concentrations in Acb dialysates during sexual behavior, with lower increases of dopamine and glutamic acid in DAT KO vs. WT and HET rats, and a lower expression of the markers investigated, mainly in the mPFC, in DAT KO vs. WT rats. Together these findings confirm a key role of dopamine in sexual behavior and provide evidence that the permanently high levels of dopamine triggered by DAT gene silencing cause alterations in both the frontocortical glutamatergic neurons projecting to the Acb and VTA and in the mesolimbic dopaminergic neurons, leading to specific brain regional changes in trophic support and neuroplastic processes, which may have a role in the sexual behavior differences found among the three rat genotypes.